Takahito Nishikata

Learn More
The gene family encoding RNA-binding proteins includes important regulators involved in the neurogenesis in both protostomes and deuterostomes. We isolated cDNAs of the ascidian homolog of one of the RNA-binding proteins, MUSASHI, from Halocynthia roretzi and Ciona intestinalis. The predicted amino acid sequences contained two RNA-recognition and(More)
The mechanism of unequal cleavage is one of the most intriguing subjects in cell biology. Previous studies of unequal cleavage have focused on a limited number of organisms such as yeasts, nematodes, sea urchins and annelids. The cleavage pattern of the ascidian embryo is invariant. In the ascidian embryo, the posterior-most blastomeres divide unequally in(More)
Among 40 notochord cells of an ascidian tadpole larva, 32 notochord cells originate from the anterior-vegetal blastomeres (the A4.1 pair) of an 8-cell embryo and eight cells originate from the posterior-vegetal blastomeres (the B4.1 pair), but the animal blastomeres (the a4.2 and b4.2 pairs) are not engaged in the formation of the notochord. If four pairs(More)
Ooplasmic segregation in ascidian eggs consists of two phases of cytoplasmic movement, the first phase is mediated by the microfilament system and the second is mediated by the microtubule system. Recently, two novel proteins, p58 and myoplasmin-C1, which are localized to the myoplasm, were suggested to have important roles in muscle differentiation. In(More)
The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like(More)
The relatively simple structure of ascidians and the number of associated molecular resources that are available make ascidians an excellent experimental system for Investigating the molecular mechanisms underlying neural tube formation. The ascidian neural tube demonstrates the same basic morphology as that of vertebrates. We have described the expression(More)
We have cloned a newly identified gene, designated CiNut, C iona i ntestinalis neural-tube-specific gene. CiNut shows weak similarity to known neural receptors such as adrenergic receptors. Moreover, seven transmembrane domains are predicted based on its amino acid sequence. Zygotic expression of CiNut starts at the gastrula stage, and is restricted to the(More)
This study was conducted to examine any changes caused by feed restriction in dogs to contribute to safety evaluation in toxicity studies. Two male 7-month-old beagle dogs/group were fed 300 (control), 150 (50% of control), or 70 g/animal of diet daily (23% of control) for 4 weeks. Effects of feed restriction, except for clinical signs, were noted depending(More)
In ascidian eggs, cytoplasmic and cortical reorganization, previously called ooplasmic segregation, occurs in two phases during the first cell cycle. In the second phase of reorganization, the mitochondria-rich cytoplasm (myoplasm) moves to the future posterior side, concurrent with sperm aster migration along the egg cortex. Although this reorganization is(More)
Use of antibodies is a cornerstone of biological studies and it is important to identify the recognized protein with certainty. Generally an antibody is considered specific if it labels a single band of the expected size in the tissue of interest, or has a strong affinity for the antigen produced in a heterologous system. The identity of the antibody target(More)
  • 1