Takahito Nishikata

Learn More
The mechanism of unequal cleavage is one of the most intriguing subjects in cell biology. Previous studies of unequal cleavage have focused on a limited number of organisms such as yeasts, nematodes, sea urchins and annelids. The cleavage pattern of the ascidian embryo is invariant. In the ascidian embryo, the posterior-most blastomeres divide unequally in(More)
Ascidian embryos sequester a specific cytoplasm, called the postplasm, at the posterior pole, where many maternal RNAs and proteins accumulate. Although the postplasm is thought to act as the germ plasm, it is also highly enriched in several factors essential for somatic cell development, and how the postplasm components regulate both germ and somatic cell(More)
Many kinds of animal embryos exhibit stereotyped cleavage patterns during early embryogenesis. In the ascidian Halocynthia roretzi, cleavage patterns are invariant but they are complicated by successive unequal cleavages that occur in the posterior region. Here we report the essential roles of a novel structure, called the centrosome-attracting body (CAB),(More)
Utilizing a muscle-specific monoclonal antibody (Mu-2) as a probe, we analysed developmental mechanisms involved in muscle cell differentiation in ascidian embryos. The antigen recognized by Mu-2 was a single polypeptide with a relative molecular mass of about 220 X 10(3). It first appeared at the early tailbud stage and continued to be expressed until the(More)
A set of 1,378 expressed sequence tags (ESTs), both the 5'-most and 3'-most ends, derived from Ciona intestinalis fertilized eggs was categorized into 1,003 independent clusters. When compared with sequences in databases, 452 of the clusters showed significant matches with reported proteins, while 190 showed matches with putative proteins for which there is(More)
Among 40 notochord cells of an ascidian tadpole larva, 32 notochord cells originate from the anterior-vegetal blastomeres (the A4.1 pair) of an 8-cell embryo and eight cells originate from the posterior-vegetal blastomeres (the B4.1 pair), but the animal blastomeres (the a4.2 and b4.2 pairs) are not engaged in the formation of the notochord. If four pairs(More)
We have produced two monoclonal antibodies (Epi-1 and Epi-2) which specifically recognize epidermal cells and their derivative, the larval tunic, of developing embryos of the ascidian Halocynthia roretzi. The antigens, examined by indirect immunofluorescence staining, first appear at the early tailbud stage and are present until at least the swimming larval(More)
OBJECTIVES A recent study demonstrated that reactive oxygen species (ROS) were involved in the maintenance of hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). However, the role of oxidative stress in hypertension and its related diseases in SHRSP remains unknown. To determine whether phytoestrogens attenuate oxidative DNA damage in(More)
The ascidian egg is a well-known mosaic egg. In order to investigate the molecular nature of the maternal genetic information stored in the egg, we have prepared cDNAs from the mRNAs in the fertilized eggs of the ascidian, Halocynthia roretzi. The cDNAs of the ascidian embryo were sequenced, and the localization of individual mRNA was examined in staged(More)