Takahiro Shiotsuki

Learn More
The insect growth regulator (IGR) imidazole KK-42 induces hemolymph juvenile hormone esterase activity and precocious metamorphosis in Bombyx mori. As an initial step to understand the molecular action of KK-42, we isolated a full-length of juvenile hormone esterase cDNA from B. mori (BmJHE). The deduced amino acid sequence of BmJHE showed high identity to(More)
We have identified a novel member of the nuclear receptor superfamily from the silkworm Bombyx mori, and named it as BmHR78, the B. mori hormone receptor. The DNA binding domain of BmHR78 shows high similarities to those of Tenebrio molitor hormone receptor 78, Drosophila hormone receptor 78, and mammalian testicular receptor 2, whereas the ligand binding(More)
1. Juvenile hormone esterase (JHE) is a serine hydrolase selective for hydrolysis of the conjugated methyl esters of insect juvenile hormones. 2. We have investigated the mechanism of catalytic action of this enzyme by site-directed mutagenesis of the cloned enzyme and expression of the mutants in a baculovirus system. 3. A series of individual mutations of(More)
Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution,(More)
Juvenile hormone epoxide hydrolases (JHEHs) are a family of enzymes that hydrolyze juvenile hormones (JHs). They are important in terms of organ-specific regulation and irreversible degradation. In contrast to three JHEH genes (jheh) in Drosophila melanogaster and five jheh in Tribolium castaneum, only one jheh gene has been reported to date in lepidopteran(More)
Juvenile hormone epoxide hydrolases (JHEHs) degrade juvenile hormones (JHs) and are important for JH titre regulation. Here, we report the cloning and analysis of five jheh-related (jheh-r1-r5) genes in the red flour beetle, Tribolium castaneum, a model species for the coleopteran insects. T. castaneum JHEH-r (TcJHEH-r) proteins show high homology to(More)
Carboxyl/cholinesterases (CCEs) have pivotal roles in dietary detoxification, pheromone or hormone degradation and neurodevelopment. The recent completion of genome projects in various insect species has led to the identification of multiple CCEs with unknown functions. Here, we analyzed the phylogeny, expression and genomic distribution of 69 putative CCEs(More)
Most aphids show reproductive polyphenism, i.e. they alternate their reproductive modes from parthenogenesis to sexual reproduction in response to short photoperiods. Although juvenile hormone (JH) has been considered a likely candidate for regulating the transition from asexual to sexual reproduction after photoperiod sensing, there are few studies(More)
The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory(More)
Juvenile hormone esterases (JHEs) are required for the degradation of juvenile hormones (JHs) in insects. Here, we report the cloning and analysis of the jhe gene in the red flour beetle, Tribolium castaneum, a model insect of Coleoptera. The Tcjhe gene was strongly expressed at the final instar larva, as would be expected if it functioned to decrease the(More)