Takahiro Ikeda

Learn More
Using the decomposition of an image field in two spatial components that can be controllably shifted in phase with respect to each other, a new quantitative-phase microscope has been developed. The new instrument, referred to as the fast Fourier phase microscope (f-FPM), provides a factor of 100 higher acquisition rate compared with our previously reported(More)
Using a novel noncontact technique based on optical interferometry, we quantify the nanoscale thermal fluctuations of red blood cells (RBCs) and giant unilamellar vesicles (GUVs). The measurements reveal a nonvanishing tension coefficient for RBCs, which increases as cells transition from a discocytic shape to a spherical shape. The tension coefficient(More)
We present a new quantitative method for investigating red blood cell morphology and dynamics. The instrument integrates quantitative phase microscopy with an inverted microscope, which makes it particularly suitable for the noninvasive assessment of live erythrocytes. In particular, we demonstrate the ability of this approach to quantify noninvasively cell(More)
There is a need for a noninvasive technique to monitor living pluripotent stem cell condition without any labeling. We present an optical imaging technique that is able to capture information about optical path difference through the cell and cell adhesion properties simultaneously using a combination of quantitative phase microscopy (QPM) and interference(More)
Highly dispersed rhodium nanoparticles (1.7 +/- 0.3 nm) prepared by a liquid-phase reduction method were loaded on a solid solution of GaN and ZnO without forming aggregates, achieving improved activity for visible-light-driven overall water splitting when the nanoparticles are coated with a chromia shell.
  • 1