Learn More
Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized(More)
Obligate endocellular symbiotic bacteria of insects and other organisms generally exhibit drastic genome reduction. Recently, it was shown that symbiotic gut bacteria of some stinkbugs also have remarkably reduced genomes. Here, we report the complete genome sequence of such a gut bacterium Ishikawaella capsulata of the plataspid stinkbug Megacopta(More)
Development of insecticide resistance has been a serious concern worldwide, whose mechanisms have been attributed to evolutionary changes in pest insect genomes such as alteration of drug target sites, up-regulation of degrading enzymes, and enhancement of drug excretion. Here, we report a previously unknown mechanism of insecticide resistance: Infection(More)
Many insects are dependent on bacterial symbionts that provide essential nutrients (ex. aphid-Buchnera and tsetse-Wiglesworthia associations), wherein the symbionts are harbored in specific cells called bacteriocytes that constitute a symbiotic organ bacteriome. Facultative and parasitic bacterial symbionts like Wolbachia have been regarded as(More)
The broad-headed bug Riptortus clavatus (Heteroptera: Alydidae) possesses a number of crypts at a posterior midgut region, which house a dense population of a bacterial symbiont belonging to the genus Burkholderia. Although the symbiont is highly prevalent (95 to 100%) in the host populations, the symbiont phylogeny did not reflect the host systematics at(More)
The origin of specific insect genotypes that enable efficient use of agricultural plants is an important subject not only in applied fields like pest control and management but also in basic disciplines like evolutionary biology. Conventionally, it has been presupposed that such pest-related ecological traits are attributed to genes encoded in the insect(More)
The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic(More)
Male-killing phenotypes are found in a variety of insects and are often associated with maternally inherited endosymbiotic bacteria. In several species of Drosophila, male-killing endosymbionts of the genus Spiroplasma have been found at low frequencies (0.1 to 3%). In this study, spiroplasma infection without causing male-killing was shown to be prevalent(More)
BACKGROUND Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities(More)
The stinkbug Parastrachia japonensis (Hemiptera: Parastrachiidae) is known for its prolonged prereproductive nonfeeding period, maternal care of eggs in an underground nest, and maternal collection and provisioning of food (fruits) for nymphs. A previous study suggested that a bacterial symbiont is involved in uric acid recycling in this insect during the(More)