Learn More
BACKGROUND Metastasis to regional lymph nodes via lymphatic vessels plays a key role in cancer progression. Tumor lymphangiogenesis is known to promote lymphatic metastasis, and vascular endothelial growth factor C (VEGF-C) is a critical activator of tumor lymphangiogenesis during the process of metastasis. We previously identified periostin as an invasion-(More)
Cumulative evidences show that Runt-related transcription factor 3 (RUNX3) has a tumor suppressive role in various cancers. In particular, RUNX3 appears to be an important component of the transforming growth factor-β (TGF-β)-induced tumor suppression pathway. Contrary to reports on this tumor suppressive role of RUNX3, RUNX3 can also function as an(More)
Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic(More)
Matrix metalloproteinases (MMPs) are extracellular zinc-dependent endopeptidases involved in the degradation and remodeling of extracellular matrix in physiological and pathological processes. MMPs also have a role in cell proliferation, migration, differentiation, angiogenesis, and apoptosis. We previously identified cancer invasion-related factors by(More)
BACKGROUND Runt-related transcription factor 3 (RUNX3) is a tumor suppressor of cancer and appears to be an important component of the transforming growth factor-beta (TGF-ss)-induced tumor suppression pathway. Surprisingly, we found that RUNX3 expression level in head and neck squamous cell carcinoma (HNSCC) tissues, which is one of the most common types(More)
PURPOSE Head and neck squamous cell carcinoma (HNSCC) shows persistent invasion that frequently leads to local recurrence and distant lymphatic metastasis. However, molecular mechanisms associated with invasion of HNSCC remain poorly understood. We identified IFN-induced transmembrane protein 1 (IFITM1) as a candidate gene for promoting the invasion of(More)
Head and neck squamous cell carcinoma (HNSCC) has a high capacity for invasion. To identify microRNAs (miRNAs) that regulate HNSCC invasion, we compared miRNA expression profiles between a parent HNSCC cell line and a highly invasive clone. The miR-200 family and miR-203 were downregulated in the clone. Here we focused on the role of miR-203 in invasion and(More)
BACKGROUND Periostin, IFN-induced transmembrane protein 1 (IFITM1) and Wingless-type MMTV integration site family, member 5B (Wnt-5b) were previously identified as the invasion promoted genes of head and neck squamous cell carcinoma (HNSCC) by comparing the gene expression profiles between parent and a highly invasive clone. We have previously reported that(More)
Survivin belongs to the inhibitors of apoptosis (IAP) gene family and inhibits apoptosis. Besides its role as IAP, Survivin recently appears to function as a subunit of the chromosomal passenger complex (CPC) for regulating cell division with other CPC proteins including Aurora-B and INCENP. Nuclear Survivin is suspected to control cell division, whereas(More)
Neonatal thymectomy in certain mouse strains is known to induce organ-specific autoimmunity due to impaired functions of T cells, including Foxp3(+) regulatory T (Treg) cells in the thymus. The precise mechanism underlying the induction of autoimmunity by neonatal thymectomy remains unclear. One possibility is that depletion of Treg cells breaks down(More)