Learn More
Computational prediction of protein structural class based solely on sequence data remains a challenging problem in protein science. Existing methods differ in the protein sequence representation models and prediction engines adopted. In this study, a powerful feature extraction method, which combines position-specific score matrix (PSSM) with auto(More)
Knowledge of structural class plays an important role in understanding protein folding patterns. In this study, a simple and powerful computational method, which combines support vector machine with PSI-BLAST profile, is proposed to predict protein structural class for low-similarity sequences. The evolution information encoding in the PSI-BLAST profiles is(More)
Knowledge of structural class plays an important role in understanding protein folding patterns. So it is necessary to develop effective and reliable computational methods for prediction of protein structural class. To this end, we present a new method called NN-CDM, a nearest neighbor classifier with a complexity-based distance measure. Instead of(More)
Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative(More)
Apoptosis proteins are very important for understanding the mechanism of programmed cell death. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on amino acid substitution matrix and auto covariance transformation, we introduce a new sequence-based model, which(More)
Knowledge of apoptosis proteins plays an important role in understanding the mechanism of programmed cell death. Thus, annotating the function of apoptosis proteins is of significant value. Since the function of apoptosis proteins correlates with their subcellular location, the information about their subcellular location can be very useful in understanding(More)
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization(More)
A complexity-based approach is proposed to predict subcellular location of proteins. Instead of extracting features from protein sequences as done previously, our approach is based on a complexity decomposition of symbol sequences. In the first step, distance between each pair of protein sequences is evaluated by the conditional complexity of one sequence(More)
Vibrio parahaemolyticus is the causative agent of food-borne gastroenteritis disease. Once consumed, human acid gastric fluid is perhaps one of the most important environmental stresses imposed on the bacterium. Herein, for the first time, we investigated Vibrio parahaemolyticus CHN25 response to artificial gastric fluid (AGF) stress by transcriptomic(More)