Tai-Sing Wu

  • Citations Per Year
Learn More
Traditional nanostructured design of cerium oxide catalysts typically focuses on their shape, size, and elemental composition. We report a different approach to enhance the catalytic activity of cerium oxide nanostructures through engineering high density of oxygen vacancy defects in these catalysts without dopants. The defect engineering was accomplished(More)
A quasi in situ X-ray absorption study demonstrated that the disproportionation of hydrogen peroxide (H2O2) promoted by ceria nanorods was associated with a reversible Ce(3+)/Ce(4+) reaction and structural transformations in ceria. The direction of this reversible reaction was postulated to depend on the H2O2 concentration and the fraction of Ce(3+) species(More)
Hydrated niobium oxides are used as strong solid acids with a wide variety of catalytic applications, yet the correlations between structure and acidity remain unclear. New insights into the structural features giving rise to Lewis and Brønsted acid sites are presently achieved. It appears that Lewis acid sites can arise from lower coordinate NbO5 and in(More)
Gold clusters have garnered intense interest because of their unusual catalytic activities towards chemical reactions of industrial importance. Electronic structures of oxide supported gold clusters can provide critical clues to the mechanisms for their catalytic activity. Gold atoms possess an electronic configuration of [Xe] 4f145d106s1. However, both(More)
Near quantitative carbon yields of diesel-range alkanes were achieved from the hydrodeoxygenation of triglycerides over Pd/NbOPO4 under mild conditions with no catalyst deactivation: catalyst characterization and theoretical calculations suggest that the high hydrodeoxygenation activity originated from the synergistic effect of Pd and strong Lewis acidity(More)
  • 1