Learn More
Traditional nanostructured design of cerium oxide catalysts typically focuses on their shape, size, and elemental composition. We report a different approach to enhance the catalytic activity of cerium oxide nanostructures through engineering high density of oxygen vacancy defects in these catalysts without dopants. The defect engineering was accomplished(More)
A quasi in situ X-ray absorption study demonstrated that the disproportionation of hydrogen peroxide (H2O2) promoted by ceria nanorods was associated with a reversible Ce(3+)/Ce(4+) reaction and structural transformations in ceria. The direction of this reversible reaction was postulated to depend on the H2O2 concentration and the fraction of Ce(3+) species(More)
Near quantitative carbon yields of diesel-range alkanes were achieved from the hydrodeoxygenation of triglycerides over Pd/NbOPO4 under mild conditions with no catalyst deactivation: catalyst characterization and theoretical calculations suggest that the high hydrodeoxygenation activity originated from the synergistic effect of Pd and strong Lewis acidity(More)
  • 1