Learn More
We consider the problem of 2D supersonic flow onto a solid wedge, or equivalently in a concave corner formed by two solid walls. For mild corners, there are two possible steady state solutions, one with a strong and one with a weak shock emanating from the corner. The weak shock is observed in supersonic flights. A long-standing natural conjecture is that(More)
It is shown that expansion waves for the compressible Navier-Stokes equations are nonlinearly stable. The expansion waves are constructed for the compressible Euler equations based on the inviscid Burgers equation. Our result shows that Navier-Stokes equations and Euler equations are timeasymptotically equivalent on the level of expansion waves. The result(More)
We prove the ellipticity principle for selfsimilar potential flows for gas dynamics. We show that the interior of a pseudo-subsonic-sonic-region of a smooth solution must be pseudo-subsonic. In fact, the pseudo-Mach number is below that of a domain-dependent function which is < 1 in the interior and ≤ 1 on the boundary. Therefore the interior must stay(More)