Learn More
Interventional paired associative stimulation (IPAS) to the contralateral peripheral nerve and cerebral cortex can enhance the primary motor cortex (M1) excitability with two synchronously arriving inputs. This study investigated whether dopamine contributed to the associative long-term potentiation-like effect in the M1 in Parkinson's disease (PD)(More)
OBJECTIVE To study the effect of 0.9 Hz repetitive transcranial magnetic stimulation (rTMS) of the lateral premotor cortex on neuronal activity in cortical motor areas during simple motor tasks. METHODS In 8 subjects, electroencephalogram (EEG) and electromyogram (EMG) were simultaneously recorded during voluntary contractions of the thumb before and(More)
While motor control is very often a goal-oriented event, little is known about the mechanisms underlying the termination of motor performance. To investigate what type of cortical activation underlies the muscle relaxation required to terminate the act, we performed single- and double-pulse transcranial magnetic stimulation (TMS) studies during voluntary(More)
OBJECTIVE Recent transcranial magnetic stimulation (TMS) studies showed that the sensory input can decrease the motor cortex excitability (afferent inhibition). To clarify the effect of attention on sensorimotor integration, we investigated the effect of spatial attention on afferent inhibition. METHODS Right median nerve electrical stimulation followed,(More)
OBJECTIVE Previous lesion studies in patients and functional imaging studies in normal subjects have led to the notion that the temporo-parietal junction (TPJ) has an integrative function for multisensory inputs. However, its electrophysiological properties such as response latencies and distributions of responses to various stimulus modalities in humans(More)
High-frequency stimulation (HFS) induces long-term potentiation (LTP) at inhibitory synapses of layer 5 pyramidal neurons in developing rat visual cortex. This LTP requires postsynaptic Ca2+ rise for induction, while the maintenance mechanism is present at the presynaptic site, suggesting presynaptic LTP expression and the necessity of retrograde signaling.(More)
PURPOSE To investigate underlying mechanisms and adequate parameters for electric cortical stimulation to inhibit epileptic focus in humans. METHODS A patient with intractable partial epilepsy had subdural electrodes implanted for preoperative evaluation. Cortical functional mapping was performed by using 50-Hz alternating square pulse of 0.3-ms duration,(More)
OBJECTIVE To evaluate the suppressive effect of electric cortical stimulation upon the seizure onset zone and the non-epileptic cortex covered by subdural electrodes in patients with neocortical epilepsy and mesial temporal lobe epilepsy (MTLE). METHODS Four patients with medically intractable focal epilepsy had implanted subdural electrodes for(More)
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal(More)