Learn More
The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution.(More)
The p21-activated Ser/Thr kinase 1 (PAK1) kinase has an essential role in tumorigenesis and cell survival in many cancers, but its regulation is not fully understood. In this study, we showed that in response to irradiation of lung cancer cells, PAK1 was upregulated, tyrosine phosphorylated, and translocated to the nucleus. Tyrosine phosphorylation relied(More)
Broad, multispecific CD4(+) and CD8(+) T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine(More)
Resistance of cancer cells to ionizing radiation plays an important role in the clinical setting of lung cancer treatment. To date, however, the exact molecular mechanism of radiosensitivity has not been well explained. In this study, we compared radioresistance in two types of non-small cell lung cancer (NSCLC) cells, NCI-H460 and A549, and investigated(More)
Wireless sensor network (WSN) testbeds are useful because they provide a way to test applications in an environment that makes it easy to deploy experiments, configure them statically or dynamically, and gather performance information. Sensor data collected in the field can be replayed on nodes, and new ways to process the data can be tested easily.(More)
Acquired resistance of tumor cells during treatment limits the clinical efficacy of radiotherapy. Recent studies to investigate acquired resistance under treatment have focused on intercellular communication because it promotes survival and aggressiveness of tumor cells, causing therapy failure and tumor relapse. Accordingly, a better understanding of the(More)
The siRNA silencing approach has long been used as a method to regulate the expression of specific target genes in vitro and in vivo. However, the effectiveness of delivery and the nonspecific immune-stimulatory function of siRNA are the limiting factors for therapeutic applications of siRNAs. To overcome these limitations, we developed self-assembled(More)
Cytochrome P450s (P450s) are the most versatile biological catalysts in plants; however, because the structure of the P450s has not been fully established, their broad substrate specificity has been limitedly discussed. p-coumarate-3-hydroxylase (C3H) is an essential enzyme for the biosynthesis of phenolic natural products in plants, but all attempts to(More)
Radiotherapy plays a critical role in the treatment of non-small cell lung cancer (NSCLC). However, radioresistance is a major barrier against increasing the efficiency of radiotherapy for NSCLC. To understand the mechanisms underlying NSCLC radioresistance, we previously focused on the potential involvement of PIM1, PRAS40, FOXO3a, 14-3-3, and protein(More)
18F-labeled fluorodeoxyglucose (FDG) uptake during FDG positron emission tomography seems to reflect increased radioresistance. However, the exact molecular mechanism underlying high glucose (HG)-induced radioresistance is unclear. In the current study, we showed that ionizing radiation-induced activation of the MEK-ERK-DAPK-p53 signaling axis is required(More)