Learn More
Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, an event critical for the maintenance of genomic integrity. We show that Plk4 relocalizes from the inner Cep192 ring to the outer Cep152 ring as newly recruited Cep152 assembles around the Cep192-encircled daughter centriole. Crystal-structure analyses revealed that Cep192- and(More)
In this paper, the fault tolerant system for BLDC motors has been proposed to maintain the control performance under switching device faults of inverter. The proposed fault tolerant system provides compensation for open-circuit faults and short-circuit faults in power converter. The fault identification is quickly achieved by simple algorithm using the(More)
UNLABELLED (18)F-FDG uptake in malignant tumors largely depends on the presence of facilitated glucose transporters, especially type 1 (Glut 1) and a rate-limiting glycolytic enzyme, hexokinase (HK) type II. Low expression of Glut 1 was reported in hepatocellular carcinoma (HCC), whereas high expression was found in cholangiocarcinoma. Immunohistochemistry(More)
Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations.(More)
A post-linearization technique for the differential CMOS LNA is presented. The proposed method uses an additional cross-coupled FET pair which generates the 3<sup>rd</sup>-order inter-modulation (IM3) current to cancel out the IM3 current of the differential amplifier while minimizing the degradation of noise figure and avoiding the gain reduction. This(More)