Tae Jung Park

Learn More
Metal nanoparticles are garnering considerable attention owing to their high potential for use in various applications in the material, electronics, and energy industries. Recent research efforts have focused on the biosynthesis of metal nanomaterials using microorganisms rather than traditional chemical synthesis methods. Microorganisms have evolved to(More)
We have developed a simple electrochemical biosensing strategy for the label-free diagnosis of hepatitis B virus (HBV) on a gold electrode surface. Gold-binding polypeptide (GBP) fused with single-chain antibody (ScFv) against HBV surface antigen (HBsAg), in forms of genetically engineered protein, was utilized. This GBP-ScFv fusion protein can directly(More)
Organic-inorganic hybrid nanoflowers, a newly developed class of flower-like hybrid nanoparticles, have received much attention due to their simple synthesis, high efficiency, and enzyme stabilizing ability. This article covers, in detail, the types, structural features, mechanism of formation, and bio-related applications of hybrid nanoflowers. The five(More)
Bioactive microcapsules containing Bacillus thuringiensis (BT) spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP) on the spore surface to spatially direct the EGFP-presenting spores within microcapsules.(More)
The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of(More)
Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties(More)
BACKGROUND The anchoring motif is one of the most important aspects of cell surface display as well as efficient and stable display of target proteins. Thus, there is currently a need for the identification and isolation of novel anchoring motifs. RESULTS A system for the display of recombinant proteins on the surface of Escherichia coli was developed(More)
Orbital blowout fracture frequently occurs along the floor or medial aspect of the orbital wall, which are the two thinnest areas of the bony orbit. True trapdoor injury of the orbit is less common and is rare as an isolated medial wall injury, because the medial orbital wall has several bony septa within the ethmoid sinus that provide support and decrease(More)
—A biosensor based on a nanowire field-effect transistor is demonstrated on a bulk silicon wafer for low-cost applications. The silicon nanowire is fabricated using a simple reactive-ion etching technique known as the Bosch process. The sensor operation of the fabricated device is confirmed as a proof of concept by detecting the negatively and positively(More)
Lab-on-a-chip can provide convenient and accurate diagnosis tools. In this paper, a plastic-based microfluidic immunosensor chip for the diagnosis of swine flu (H1N1) was developed by immobilizing hemagglutinin antigen on a gold surface using a genetically engineered polypeptide. A fluorescent dye-labeled antibody (Ab) was used for quantifying the(More)
  • 1