Learn More
A silicon nanowire field effect transistor (FET) straddled by the double-gate was demonstrated for biosensor application. The separated double-gates, G1 (primary) and G2 (secondary), allow independent voltage control to modulate channel potential. Therefore, the detection sensitivity was enhanced by the use of G2. By applying weakly positive bias to G2, the(More)
Metal nanoparticles are garnering considerable attention owing to their high potential for use in various applications in the material, electronics, and energy industries. Recent research efforts have focused on the biosynthesis of metal nanomaterials using microorganisms rather than traditional chemical synthesis methods. Microorganisms have evolved to(More)
Graphene sheets have the potential for practical applications in electrochemical devices, but their development has been impeded by critical problems with aggregation of graphene sheets. Here, we demonstrated a facile and bottom-up approach for fabrication of DNA sensor device using water-soluble sulfonated reduced graphene oxide (SRGO) sheets via(More)
Organic-inorganic hybrid nanoflowers, a newly developed class of flower-like hybrid nanoparticles, have received much attention due to their simple synthesis, high efficiency, and enzyme stabilizing ability. This article covers, in detail, the types, structural features, mechanism of formation, and bio-related applications of hybrid nanoflowers. The five(More)
A nanoforest structure for surface-enhanced Raman scattering (SERS) active substrates is fabricated and analyzed. The detailed morphology of the resulting structure can be easily controlled by modifying the process parameters such as initial gold layer thickness and etching time. The applicability of the nanoforest substrate as a label-free SERS(More)
Recently a mouse skin carcinogenesis study reported that a β-blocker carvedilol displayed antitumor-properties via antihyperplastic effects. However, the antihyperplastic mechanism is unclear as the β-blocker is characterized with multiple pleiotropic effects including stimulation of endothelial NO release and verapamil-like calcium channel blocking(More)
Tungsten oxide (WOx) has been widely studied for versatile applications based on its photocatalytic, intrinsic catalytic, and electrocatalytic properties. Among the several nanostructures, we focused on the flower-like structures to increase the catalytic efficiency on the interface with both increased substrate interaction capacities due to their large(More)
The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of(More)
Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties(More)