Beom-Soon Choi15
Sang-Choon Lee14
Jee Young Park13
Beom-Seok Park10
15Beom-Soon Choi
14Sang-Choon Lee
13Jee Young Park
10Beom-Seok Park
Learn More
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of(More)
Strong evidence exists for polyploidy having occurred during the evolution of the tribe Brassiceae. We show evidence for the dynamic and ongoing diploidization process by comparative analysis of the sequences of four paralogous Brassica rapa BAC clones and the homologous 124-kb segment of Arabidopsis thaliana chromosome 5. We estimated the times since(More)
BACKGROUND The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of(More)
A complete genome sequence provides unlimited information in the sequenced organism as well as in related taxa. According to the guidance of the Multinational Brassica Genome Project (MBGP), the Korea Brassica Genome Project (KBGP) is sequencing chromosome 1 (cytogenetically oriented chromosome #1) of Brassica rapa. We have selected 48 seed BACs on(More)
BACKGROUND The species Brassica rapa includes important vegetable and oil crops. It also serves as an excellent model system to study polyploidy-related genome evolution because of its paleohexaploid ancestry and its close evolutionary relationships with Arabidopsis thaliana and other Brassica species with larger genomes. Therefore, its genome sequence will(More)
BACKGROUND The Brassica species, related to Arabidopsis thaliana, include an important group of crops and represent an excellent system for studying the evolutionary consequences of polyploidy. Previous studies have led to a proposed structure for an ancestral karyotype and models for the evolution of the B. rapa genome by triplication and segmental(More)
Panax ginseng has been cultivated for centuries, and nine commercial cultivars have been registered in Korea. However, these nine elite cultivars are grown in less than 10% of ginseng fields, and there is no clear authentication system for each cultivar even though their values are higher than those of local landraces. Here, we have developed 19(More)
Little is known about the genetics or genomics of Panax ginseng. In this study, we developed 70 expressed sequence tag-derived polymorphic simple sequence repeat markers by trials of 140 primer pairs. All of the 70 markers showed reproducible polymorphism among four Panax speciesand 19 of them were polymorphic in six P. ginseng cultivars. These markers(More)
A single recessive gene, rxp, on linkage group (LG) D2 controls bacterial leaf-pustule resistance in soybean. We identified two homoeologous contigs (GmA and GmA') composed of five bacterial artificial chromosomes (BACs) during the selection of BAC clones around Rxp region. With the recombinant inbred line population from the cross of Pureunkong and(More)
Ginseng is an important medicinal plant, but almost no genomic information is known for it. For the primary step to understand the Panax genome, we inspected the chloroplast genome sequence diversity and used that to infer the evolution of Panax species using them. We inspected a total of 101 intergenic spacers (IGS) covering 44,563 bp (96.8 % of the total(More)