Learn More
Transglutaminase2 (TG2) is a multi-functional protein involved in various cellular processes, including apoptosis, differentiation, wound healing, and angiogenesis. The malfunction of TG2 causes many human disease including inflammatory disease, celiac disease, neurodegenerative diseases, tissue fibrosis, and cancers. Protein cross-linking activity, which(More)
Caspase-2 is critical for genotoxic stress induced apoptosis and is activated by formation of the PIDDosome, an oligomeric caspase-2 activating complex. The PIDDosome comprises three protein components, PIDD, RAIDD, and caspase-2. RAIDD contains both a death domain (DD) and a caspase recruitment domain (CARD). It acts as the bridge to recruit PIDD using the(More)
Toll-like receptors (TLRs) are responsible for recognition of particular pathogens during the innate immune response and cytoplasmic Toll/interleukin-1 receptor (TIR) domain responsible for downstream signaling. TLR6 working with TLR2 can detect bacterial lipoprotein leading signal for nuclear factor-kappaB activation for immune response. To better(More)
CARMA1, BCL10 and MALT1 form a large molecular complex known as the CARMA1 signalosome during lymphocyte activation. Lymphocyte activation via the CARMA1 signalosome is critical to immune response and linked to many immune diseases. Despite the important role of the CARMA1 signalosome during lymphocyte activation and proliferation, limited structural(More)
Omega-transaminase (ω-TA) catalyzes the transfer of an amino group from a non-alpha-position amino acid or an amine compound with no carboxylic group to an amino acceptor. ω-TA from Vibrio fluvialis JS17 (ω-TAVf) is a novel amine:pyruvate transaminase that is capable of stereoselective transamination of aryl chiral amines. In this study, omega-TAVf was(More)
Receptor interaction protein kinase 1 (RIP1) is a molecular cell-fate switch. RIP1, together with Fas-associated protein with death domain (FADD) and caspase-8, forms the RIPoptosome that activates apoptosis. RIP1 also associates with RIP3 to form the necrosome that triggers necroptosis. The RIPoptosome assembles through interactions between the death(More)
Caspases are cysteine proteases that are essential during the initiation and execution of apoptosis and inflammation. The formation of large oligomeric protein complexes is critical to the activation of caspases in apoptotic and inflammatory signaling pathways. These oligomeric protein complexes function as a platform to recruit caspases, which leads to(More)
The Death Domain (DD) superfamily, which is one of the largest classes of protein interaction modules, plays a pivotal role in apoptosis, inflammation, necrosis and immune cell signaling pathways. Because aberrant or inappropriate DD superfamily-mediated signaling events are associated with various human diseases, such as cancers, neurodegenerative diseases(More)
Caspase-2 activation by formation of PIDDosome is critical for genotoxic stress induced apoptosis. PIDDosome is composed of three proteins, RAIDD, PIDD, and Caspase-2. RAIDD is an adaptor protein containing an N-terminal Caspase-Recruiting-Domain (CARD) and a C-terminal Death-Domain (DD). Its interactions with Caspase-2 and PIDD through CARD and DD(More)
Toll-like receptor (TLR) proteins have been identified and shown to play a role in the innate immune response. TLR6 associated with TLR2 can recognize diacylated lipoprotein. In this study, the human TLR6 TIR domain corresponding to amino acids 640-796 was overexpressed in Escherichia coli using engineered C-terminal His tags. The TLR6 TIR domain was then(More)