Learn More
The interferon-regulatory factor (IRF) family of transcription factors was initially found to be involved in the induction of genes that encode type I interferons. IRFs have now been shown to have functionally diverse roles in the regulation of the immune system. Recently, the crucial involvement of IRFs in innate and adaptive immune responses has been(More)
Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s)(More)
Signaling by RANKL is essential for terminal differentiation of monocytes/macrophages into osteoclasts. The TRAF6 and c-Fos signaling pathways both play important roles downstream of RANKL. We show here that RANKL selectively induces NFATc1 expression via these two pathways. RANKL also evokes Ca(2+) oscillations that lead to calcineurin-mediated activation(More)
CD4(+) T regulatory cells (T(regs)), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, T(regs) were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted(More)
The type-I interferon (IFN-alpha/beta) response is critical to immunity against viruses and can be triggered in many cell types by cytosolic detection of viral infection, or in differentiated plasmacytoid dendritic cells by the Toll-like receptor 9 (TLR9) subfamily, which generates signals via the adaptor MyD88 to elicit robust IFN induction. Using mice(More)
Interferon regulatory factors (IRFs) constitute a family of transcription factors that commonly possess a novel helix-turn-helix DNA-binding motif. Following the initial identification of two structurally related members, IRF-1 and IRF-2, seven additional members have now been reported. In addition, virally encoded IRFs, which may interfere with cellular(More)
The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play(More)
The activation of Toll-like receptors (TLRs) is central to innate and adaptive immunity. All TLRs use the adaptor MyD88 for signalling, but the mechanisms underlying the MyD88-mediated gene induction programme are as yet not fully understood. Here, we demonstrate that the transcription factor IRF-5 is generally involved downstream of the TLR-MyD88(More)
The efficient induction of interferons alpha and beta (IFN-alpha/beta) in virus-infected cells is central to the antiviral response of a host and is regulated mainly at the level of gene transcription. Once produced, IFN-alpha/beta transmit signals to the cell interior via a specific receptor complex to induce an antiviral response. Recently, the(More)
DNA, whether it is microbe-derived or host-derived, evokes immune responses when exposed to the cytosol of a cell. We previously reported that DNA-dependent activator of IFN regulatory factors (DAI), also referred to as DLM-1/ZBP1, functions as a DNA sensor that activates the innate immune system. In the present study, we examined the regulation of the(More)