Learn More
The locomotion of a body through an inviscid incompressible fluid, such that the flow remains irrotational everywhere, is known to depend on inertial forces and on both the shape and the mass distribution of the body. In this paper we consider the influence of fluid viscosity on such inertial modes of locomotion. In particular we consider a free body of(More)
We prove that for every proper Hamiltonian action of a Lie group G in finite dimensions the momentum map is locally G-open relative to its image (i.e. images of G-invariant open sets are open). As an application we deduce that in a Hamiltonian system with continuous Hamiltonian symmetries, extremal relative equilibria persist for every perturbation of the(More)
Point vortices on a cylinder (periodic strip) are studied geometrically. The Hamiltonian formalism is developed, a non-existence theorem for relative equilibria is proved, equilibria are classified when all vorticities have the same sign, and several results on relative periodic orbits are established, including as corollaries classical results on vortex(More)
A sequential and rapid separation method for the determination of radon daughter nuclides, Pb-210, Bi-210 and Po-210 has been developed for application to natural waters. Rapid separation is attained by the use of the same hydrochloric acid solution. After isolation of the three radionuclides from the sample by co-precipitation with added Fe(3+), polonium(More)
Cyclohexylamine oxidase was purified 90-fold from cell-free extracts of Pseudomonas sp. capable of assimilating sodium cyclamate. The purified enzyme was homogeneous in disc electrophoresis, and the molecular weight was found to be approximately 80,000 by gel filtration. The enzyme catalyzed the following reaction: cyclohexylamine+O2+H2O leads to(More)
Dynamics of point vortices is generalized in two ways. Firstly by allowing complex strengths which allows for sources and sinks in combination with the the usual vorticity, and secondly by allowing the strengths to be functions of position. We describe several exact solutions with optical analogues, notably Snell's law and law of reflection off a mirror.