Learn More
It has been proposed that cytoplasmic peptide:N-glycanase (PNGase) may be involved in the proteasome-dependent quality control machinery used to degrade newly synthesized glycoproteins that do not correctly fold in the ER. However, a lack of information about the structure of the enzyme has limited our ability to obtain insight into its precise biological(More)
Misfolded proteins in the endoplasmic reticulum (ER) are destroyed by a pathway termed ER-associated protein degradation (ERAD). Glycans are often removed from glycosylated ERAD substrates in the cytosol before substrate degradation, which maintains the efficiency of the proteasome. Png1, a deglycosylating enzyme, has long been suspected, but not proven, to(More)
This study examines the activity of hippocampal CA, pyramidal neurons during conditioned fear stress (CFS)-induced freezing behavior in unanesthetized, unrestrained rats. The firing frequency of hippocampal CA1 pyramidal neurons was significantly decreased when conditioned rats exhibited freezing behavior. Firing frequency returned to the baseline after(More)
An increase in polydrug abuse is a major problem worldwide. A previous study showed that coadministration of methamphetamine and morphine induced lethality in rodents and humans. However, the underlying mechanisms by which the lethality is increased by the coadministration of methamphetamine and morphine have not been fully understood. Therefore, the(More)
A cytoplasmic peptide:N-glycanase has been implicated in the proteasomal degradation of newly synthesized misfolded glycoproteins exported from the endoplasmic reticulum. The gene encoding this enzyme (Png1p) has been identified in yeast. Based on sequence analysis, Png1p was classified as a member of the 'transglutaminase-like superfamily' that contains a(More)
Cytoplasmic peptide:N-glycanase (PNGase) is an enzyme that removes N-glycans from misfolded glycoproteins. The function of cytoplasmic PNGase plays a significant role in the degradation of misfolded glycoproteins, which is critical for cell viability. Recently, we reported that haloacetoamidyl derivatives of high-mannose-type oligosaccharides selectively(More)
Secretory proteins are subjected to a stringent endoplasmic reticulum-based quality control system that distinguishes aberrant from correctly folded proteins. The cytoplasmic peptide:N-glycanase cleaves oligosaccharides from misfolded glycoproteins and prepares them for degradation by the 26 S proteasome. In contrast to abundant in vitro data on its(More)
BACKGROUND Peptide:N-glycanase (PNGase) is an enzyme which releases N-linked glycans from glycopeptides/glycoproteins. This enzyme plays a role in the ER-associated degradation (ERAD) pathway in yeast and mice, but the biological importance of this activity remains unknown. PRINCIPAL FINDINGS In this study, we characterized the ortholog of cytoplasmic(More)
It is believed that BALB/c mice appear to be less sensitive to the locomotor effects of abused drugs compared to other strains, and several behaviors induced by abused drugs depend on genetic factors. The present study was designed to investigate the effects of the interaction between psychostimulants and morphine on behavior in BALB/c mice. Morphine and(More)
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor(More)