Tadashi Fukami

Learn More
Identification of the causes of productivity-species diversity relationships remains a central topic of ecological research. Different relations have been attributed to the influence of disturbance, consumers, niche specialization and spatial scale. One unexplored cause is the history of community assembly, the partly stochastic sequential arrival of(More)
Microfungi that inhabit floral nectar offer unique opportunities for the study of microbial distribution and the role that dispersal limitation may play in generating distribution patterns. Flowers are well-replicated habitat islands, among which the microbes disperse via pollinators. This metapopulation system allows for investigation of microbial(More)
The stochastic arrival of competing species and their subsequent interactions have been highlighted as principal forces underlying biotic historical effects in community assembly. However, despite the widely recognized effect of predation on prey communities, the effects that the stochastic arrival of predators may have on assembling communities are poorly(More)
The order of species arrival during community assembly can greatly affect species coexistence, but the strength of these effects, known as priority effects, appears highly variable across species and ecosystems. Furthermore, the causes of this variation remain unclear despite their fundamental importance in understanding species coexistence. Here, we show(More)
Differences in the arrival timing of plants and soil biota may result in different plant communities through priority effects, potentially affecting the success of native vs. exotic plants, but experimental evidence is largely lacking. We conducted a greenhouse experiment to investigate whether the assembly history of plants and fungal root endophytes could(More)
Priority effects, in which early-arriving species exclude competing species from local com-2 munities, are thought to enhance regional species diversity by promoting community divergence. Theory suggests, however, that these same priority effects make it impossible for 4 species to coexist in the region unless individuals are continuously supplied from an(More)
  • 1