Learn More
Priority effects, in which the outcome of species interactions depends on the order of their arrival, are a key component of many models of community assembly. Yet, much remains unknown about how priority effects vary in strength among species in a community and what factors explain this variation. We experimented with a model natural community in(More)
Community assembly history is increasingly recognized as a fundamental determinant of community structure. However, little is known as to how assembly history may affect ecosystem functioning via its effect on community structure. Using wood-decaying fungi as a model system, we provide experimental evidence that large differences in ecosystem functioning(More)
Predators often exert multi-trophic cascading effects in terrestrial ecosystems. However, how such predation may indirectly impact interactions between above- and below-ground biota is poorly understood, despite the functional importance of these interactions. Comparison of rat-free and rat-invaded offshore islands in New Zealand revealed that predation of(More)
Assembly history, or the order of species arrival, can have wide-ranging effects on species, communities and ecosystems. However, it remains unclear whether assembly history primarily affects individual species, with effects attenuating at the level of communities and ecosystems or, alternatively, has consistent effect sizes across increasing levels of(More)
Microfungi that inhabit floral nectar offer unique opportunities for the study of microbial distribution and the role that dispersal limitation may play in generating distribution patterns. Flowers are well-replicated habitat islands, among which the microbes disperse via pollinators. This metapopulation system allows for investigation of microbial(More)
In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of(More)
Over the past decade, several reports have recommended a shift in undergraduate biology laboratory courses from traditionally structured, often described as " cookbook, " to authentic research-based experiences. This study compares a cookbook-type laboratory course to a research-based undergraduate biology laboratory course at a Research 1 institution. The(More)
Biological invasions are a rapidly increasing driver of global change, yet fundamental gaps remain in our understanding of the factors determining the success or extent of invasions. For example, although most woody plant species depend on belowground mutualists such as mycorrhizal fungi and nitrogen-fixing bacteria, the relative importance of these(More)
Identification of the causes of productivity-species diversity relationships remains a central topic of ecological research. Different relations have been attributed to the influence of disturbance, consumers, niche specialization and spatial scale. One unexplored cause is the history of community assembly, the partly stochastic sequential arrival of(More)
Many ecological dynamics occur over time-scales that are well beyond the duration of conventional experiments or observations. One useful approach to overcome this problem is extrapolation of temporal dynamics from spatial variation. We review two complementary variants of this approach that have been of late increasingly employed: the use of natural(More)