Learn More
Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6(More)
Reversible acetylation on protein lysine residues has been shown to regulate the function of both nuclear proteins such as histones and p53 and cytoplasmic proteins such as alpha-tubulin. To identify novel acetylated proteins, we purified several proteins by the affinity to an anti-acetylated-lysine antibody from cells treated with trichostatin A (TSA).(More)
It is becoming increasingly clear that reversible acetylation of proteins is a signal directly controlling the activity of key cellular regulators. The enzymes controlling protein acetylation were identified as histone acetyltransferases (HATs) and histone deacetylases (HDACs). Following the discovery of HATs and HDACs, a number of non-histone proteins have(More)
We have previously shown that interferon regulatory factor-2 (IRF-2) is acetylated in a cell growth-dependent manner, which enables it to contribute to the transcription of cell growth-regulated promoters. To clarify the function of acetylation of IRF-2, we investigated the proteins that associate with acetylated IRF-2. In 293T cells, the transfection of(More)
Histone deacetylase 6 (HDAC6) is a multifunctional, cytosolic protein deacetylase that primarily acts on alpha-tubulin. Here we report that stable knockdown of HDAC6 expression causes a decrease in the steady-state level of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor alpha, in A549(More)
Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and alpha-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on(More)
Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A.(More)
Lysine methylation has been extensively studied in histones, where it has been shown to provide specific epigenetic marks for the regulation of gene expression; however, the molecular mechanism and physiological function of lysine methylation in proteins other than histones remains to be fully addressed. To better understand the substrate diversity of(More)
Cortactin is an F-actin-binding protein that localizes to the cell cortex, where the actin remodeling that is required for cell migration occurs. We found that cortactin shuttled between the cytoplasm and the nucleus under basal conditions. We identified Kelch-like ECH-associated protein 1 (Keap1), a cytosolic protein that is involved in oxidant stress(More)