Learn More
Sirtuins are NAD(+)-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both(More)
Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6(More)
Acetylation is increasingly recognized as an important metabolic regulatory posttranslational protein modification, yet the metabolic consequence of mitochondrial protein hyperacetylation is unknown. We find that high-fat diet (HFD) feeding induces hepatic mitochondrial protein hyperacetylation in mice and downregulation of the major mitochondrial protein(More)
Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and alpha-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on(More)
The sirtuins are a family of nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Humans have seven sirtuins (SIRT1-SIRT7) with distinct subcellular locations and functions. SIRT3 is localized to the mitochondrial matrix and its expression is selectively activated during fasting(More)
Sirtuins are NAD +-dependent protein deacetylases and mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 21,2. Mice lacking both SIRT3 alleles(More)
Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Three sirtuins, SIRT3, 4 and 5, are located within the mitochondrial matrix. SIRT3 and SIRT5 are NAD(+)-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins and yield 2'-O-acetyl-ADP-ribose and nicotinamide. SIRT4 can transfer(More)
Sirtuins (SIRT1-SIRT7) are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. SIRT3 is localized to the mitochondria where it deacetylates several key metabolic enzymes: acetylcoenzyme A synthetase, glutamate dehydrogenase, and subunits of complex I and thereby regulates their enzymatic activity. SIRT3(More)
The mitochondrial sirtuin SIRT3 regulates metabolic homeostasis during fasting and calorie restriction. We identified mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) as an acetylated protein and a possible target of SIRT3 in a proteomics survey in hepatic mitochondria from Sirt3(-/-) (SIRT3KO) mice. HMGCS2 is the rate-limiting step in(More)
A Hanks-type protein kinase AfsK autophosphorylates on threonine residue(s) and phosphorylates AfsR, a global regulator for secondary metabolism in Streptomyces coelicolor A3(2). Mass spectrometry of a tryptic digest of the autophosphorylated form of AfsK deltaC corresponding to the kinase catalytic domain (Met-1 to Arg-311) of AfsK, together with(More)