Tadahiko Shinshi

Learn More
This article reviews third-generation blood pumps, focusing on the magnetic-levitation (maglev) system. The maglev system can be categorized into three types: (i) external motor-driven system, (ii) direct-drive motor-driven system, and (iii) self-bearing or bearingless motor system. In the external motor-driven system, Terumo (Ann Arbor, MI, U.S.A.)(More)
A new magnetic bearing has been designed to achieve a low electronic power requirement and high stiffness. The magnetic bearing consists of 1) radial passive forces between the permanent magnet ring mounted inside the impeller rotor and the electromagnet core materials in the pump casing and 2) radial active forces generated by the electromagnets using the(More)
The magnetically levitated (Mag-Lev) centrifugal rotary blood pump (CRBP) with two-degrees-of-freedom active control is promising for safe and long-term support of circulation. In this study, Mag-Lev CRBP controllability and impeller behavior were studied in the simulated heart failure circulatory model. A pneumatically driven pulsatile blood pump (Medos(More)
A new pulse duplicator was designed for evaluation of the performance of ventricular assist devices through pressure-volume (P-V) diagrams of the native heart. A linear drive system in combination with a pusher-plate mechanism was designed as a drive system to implement the passive fill mechanism during diastole of the mock ventricle. The compliances of the(More)
A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a(More)
Controlling the flow rate in an implantable rotary blood pump based on the physiological demand made by the body is important. Even though various methods to estimate the flow rate without using a flow meter have been proposed, no adequate method for measuring the blood viscosity, which is necessary for an accurate estimate of the flow rate, without using(More)
In the field of rotary blood pumps, contactless support of the impeller by a magnetic bearing has been identified as a promising method to reduce blood damage and enhance durability. The authors developed a two-degrees-of-freedom radial controlled magnetic bearing system without a permanent magnet in the impeller in order that a low-cost disposable(More)
A magnetically levitated centrifugal blood pump (MedTech Dispo) has been developed for use in a disposable extracorporeal system. The design of the pump is intended to eliminate mechanical contact with the impeller, to facilitate a simple disposable mechanism, and to reduce the blood-heating effects that are caused by motors and magnetic bearings. The(More)
To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed,(More)