Learn More
PURPOSE A phase I/II study on carbon ion radiotherapy for Stage I non-small-cell lung cancer (NSCLC) was first conducted between 1994 and 1999 and determined the optimal dose. Second, a Phase II study using the optimal dose was performed. The purpose of the present study was to clarify the local control and 5-year survival rates. METHODS AND MATERIALS(More)
BACKGROUND AND PURPOSE Carbon ion beams provide physical and biological advantages over photons. This study summarizes the experiences of carbon ion radiotherapy at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences. MATERIALS AND METHODS Between June 1994 and August 2003, a total of 1601 patients with(More)
BACKGROUND AND PURPOSE Heavy ion radiotherapy is a promising modality because of its excellent dose localization and high biological effect on tumors. Using carbon beams, a dose escalation study was conducted for the treatment of stage I non-small cell lung cancer (NSCLC) to determine the optimal dose. MATERIALS AND METHODS The first stage phase I/II(More)
PURPOSE To evaluate the toxicity and antitumor effect of carbon ion radiotherapy for hepatocellular carcinoma within a Phase I-II trial. METHODS AND MATERIALS Between June 1995 and February 1997, 24 patients with histopathologically proven hepatocellular carcinoma were treated to 15 fractions within 5 weeks in a step-wise dose-escalation study. The(More)
BACKGROUND A phase I/II study was first conducted for the treatment of stage I non-small cell lung cancer (NSCLC) from 1994 to 1999 to determine the optimal dose. On the basis on the results, a phase II study using a regimen of four fractions during 1 week was performed. The purpose of the present study was to determine the local control and 5-year survival(More)
Surgical resection is the standard treatment for stage I non-small cell lung cancer (NSCLC). However, elderly patients with NSCLC often suffer from other conditions, such as chronic obstructive pulmonary disease (COPD) or cardiovascular disease, and are not suitable candidates for surgery. Different modalities to treat stage I NSCLC have been developed,(More)
PURPOSE To evaluate the tolerance for and effectiveness of carbon ion radiotherapy in patients with unresectable bone and soft tissue sarcomas. PATIENTS AND METHODS We conducted a phase I/II dose escalation study of carbon ion radiotherapy. Fifty-seven patients with 64 sites of bone and soft tissue sarcomas not suited for resection received carbon ion(More)
PURPOSE A retrospective analysis was made to examine appropriateness in the estimation of the biologic effectiveness of carbon-ion radiotherapy using resultant data from clinical trials at the heavy-ion medical accelerator complex (HIMAC) at the National Institute of Radiological Sciences in Chiba, Japan. METHODS AND MATERIALS At HIMAC, relative biologic(More)
In 1994 a Phase I/II clinical study on carbon ion radiotherapy was begun at NIRS using HIMAC, which was then the world's only heavy ion accelerator complex dedicated to medical use in a hospital environment. Among several types of ion species, we have chosen carbon ions for cancer therapy because they had the most optimal properties in terms of possessing,(More)
PURPOSE The purpose is to evaluate the efficacy and toxicity of carbon ion radiotherapy for unresectable sacral chordomas. EXPERIMENTAL DESIGN We performed a retrospective analysis of 30 patients with unresectable sacral chordomas treated with carbon ion radiotherapy at the Heavy Ion Medical Accelerator in Chiba, Japan. Twenty-three patients presented(More)