Share This Author
Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method
- V. Faber, T. Manteuffel
- Mathematics
- 1 April 1984
We characterize the class $CG(s)$ of matrices A for which the linear system $A{\bf x} = {\bf b}$ can be solved by an s-term conjugate gradient method. We show that, except for a few anomalies, the…
A taxonomy for conjugate gradient methods
- S. Ashby, T. Manteuffel, P. Saylor
- Computer Science
- 1 November 1990
TLDR
First-order system least squares for second-order partial differential equations: part I
- Z. Cai, R. Lazarov, T. Manteuffel, S. McCormick
- Mathematics, Computer Science
- 1 December 1994
TLDR
Algebraic Multigrid Based on Element Interpolation (AMGe)
- M. Brezina, A. Cleary, J. Ruge
- Computer ScienceSIAM J. Sci. Comput.
- 1 May 2000
TLDR
The Tchebychev iteration for nonsymmetric linear systems
- T. Manteuffel
- Mathematics
- 1 September 1977
SummaryIn this paper an iterative method for solving nonsymmetric linear systems based on the Tchebychev polynomials in the complex plane is discussed. The iteration is shown to converge whenever the…
An incomplete factorization technique for positive definite linear systems
- T. Manteuffel
- Computer Science
- 1 April 1980
TLDR
A Technique for Accelerating the Convergence of Restarted GMRES
- A. Baker, E. Jessup, T. Manteuffel
- Computer ScienceSIAM J. Matrix Anal. Appl.
- 1 April 2005
TLDR
Smoothed Aggregation Multigrid for Markov Chains
- H. D. Sterck, T. Manteuffel, G. Sanders
- Computer ScienceSIAM J. Sci. Comput.
- 1 February 2010
TLDR
First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity
- Z. Cai, T. Manteuffel, S. McCormick
- Mathematics
- 1 October 1997
Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a…
Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗
- M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, J. Ruge
- Computer Science
- 2005
TLDR
...
...