Author pages are created from data sourced from our academic publisher partnerships and public sources.

Publications Influence

Share This Author

Meyer-Vietoris type formula for determinants of elliptic differential operators

- D. Burghelea, L. Friedlander, T. Kappeler
- Mathematics
- 1 July 1992

Microlocal dispersive smoothing for the Schrödinger equation

- W. Craig, T. Kappeler, W. Strauss
- Mathematics
- 1995

This paper establishes a connection between the microlocal smoothness of solutions of the initial value problem for Schrodinger's equation and the global behavior of bicharacteristics of the… Expand

The Defocusing NLS Equation and Its Normal Form

- B. Grébert, T. Kappeler
- Physics, Mathematics
- 15 March 2014

The theme of this monograph is the nonlinear Schrodinger equation. This equation models slowly varying wave envelopes in dispersive media and arises in various physical systems such as water waves,… Expand

Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$

- T. Kappeler, P. Topalov
- Mathematics
- 1 November 2006

By the inverse method we show that the Korteweg–de Vries equation (KdV) ∂tv(x,t)=-∂x3v(x,t)+6v(x,t)∂xv(x,t)x∈T,t∈R)Hβ(T,R)β≥−1.

The Miura map on the line

- T. Kappeler, P. Perry, M. Shubin, P. Topalov
- Mathematics
- 20 June 2005

Abstract. We study relations between properties of the Miura map r ↦ → q = B(r) = r ′ + r2 and Schrodinger operators Lq = −d2 /dx2 + q where r and q are real-valued functions or distributions… Expand

Scattering and inverse scattering for steplike potentials in the Schrödinger equation

- A. Cohen, T. Kappeler
- Mathematics
- 1985

On etudie les problemes avant et inverses dans la theorie de la diffusion de l'equation de Schrodinger: −y″+ν(x)y=k 2 y, x∈R avec des potentiels en echelon ν(x) qui sont asymptotiques a differentes… Expand

TX Task: Automatic Detection of Focus Organisms in Biomedical Publications

- T. Kappeler, K. Kaljurand, Fabio Rinaldi
- Computer ScienceBioNLP@HLT-NAACL
- 4 June 2009

TLDR

Gain of regularity for equations of KdV type

- W. Craig, T. Kappeler, W. Strauss
- Mathematics
- 1 March 1992

Refined analytic torsion

- M. Braverman, T. Kappeler
- Mathematics
- 25 May 2005

Given an acyclic representation $\alpha$ of the fundamental group of a compact oriented odd-dimensional manifold, which is close enough to an acyclic unitary representation, we define a refinement… Expand

Estimates for Periodic and Dirichlet Eigenvalues of the Schrödinger Operator with Singular Potentials

- T. Kappeler, C. Möhr
- Mathematics
- 20 October 2001

Abstract In this paper, the periodic and the Dirichlet problems for the Schrodinger operator −(d2/dx2)+V are studied for singular, complex-valued potentials V in the Sobolev space H−αper[0, 1] (0⩽α… Expand

...

1

2

3

4

5

...