Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
Share This Author
Meyer-Vietoris type formula for determinants of elliptic differential operators
- D. Burghelea, L. Friedlander, T. Kappeler
- Mathematics
- 1 July 1992
Microlocal dispersive smoothing for the Schrödinger equation
- W. Craig, T. Kappeler, W. Strauss
- Mathematics
- 1995
This paper establishes a connection between the microlocal smoothness of solutions of the initial value problem for Schrodinger's equation and the global behavior of bicharacteristics of the…
The Defocusing NLS Equation and Its Normal Form
- B. Grébert, T. Kappeler
- Physics, Mathematics
- 15 March 2014
The theme of this monograph is the nonlinear Schrodinger equation. This equation models slowly varying wave envelopes in dispersive media and arises in various physical systems such as water waves,…
Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$
- T. Kappeler, P. Topalov
- Mathematics
- 1 November 2006
By the inverse method we show that the Korteweg–de Vries equation (KdV) ∂tv(x,t)=-∂x3v(x,t)+6v(x,t)∂xv(x,t)x∈T,t∈R)Hβ(T,R)β≥−1.
The Miura map on the line
- T. Kappeler, P. Perry, M. Shubin, P. Topalov
- Mathematics
- 20 June 2005
Abstract. We study relations between properties of the Miura map r ↦ → q = B(r) = r ′ + r2 and Schrodinger operators Lq = −d2 /dx2 + q where r and q are real-valued functions or distributions…
Scattering and inverse scattering for steplike potentials in the Schrödinger equation
- A. Cohen, T. Kappeler
- Mathematics
- 1985
On etudie les problemes avant et inverses dans la theorie de la diffusion de l'equation de Schrodinger: −y″+ν(x)y=k 2 y, x∈R avec des potentiels en echelon ν(x) qui sont asymptotiques a differentes…
TX Task: Automatic Detection of Focus Organisms in Biomedical Publications
- T. Kappeler, K. Kaljurand, Fabio Rinaldi
- Computer ScienceBioNLP@HLT-NAACL
- 4 June 2009
TLDR
Gain of regularity for equations of KdV type
- W. Craig, T. Kappeler, W. Strauss
- Mathematics
- 1 March 1992
Refined analytic torsion
- M. Braverman, T. Kappeler
- Mathematics
- 25 May 2005
Given an acyclic representation $\alpha$ of the fundamental group of a compact oriented odd-dimensional manifold, which is close enough to an acyclic unitary representation, we define a refinement…
Estimates for Periodic and Dirichlet Eigenvalues of the Schrödinger Operator with Singular Potentials
- T. Kappeler, C. Möhr
- Mathematics
- 20 October 2001
Abstract In this paper, the periodic and the Dirichlet problems for the Schrodinger operator −(d2/dx2)+V are studied for singular, complex-valued potentials V in the Sobolev space H−αper[0, 1] (0⩽α…
...
1
2
3
4
5
...