T W Hulscher

Learn More
The effects of prolonged exposure to 2 and 10 microM 6-mercaptopurine (6MP) in the human lymphoblastic T-cell line MOLT-4 were studied with respect to cell-kinetic parameters, phosphoribosyl pyrophosphate (PRPP) and purine ribonucleotide levels, formation of 6MP-nucleotides, especially methyl-thio-IMP (Me-tIMP), DNA and RNA synthesis ([32P] incorporation),(More)
Methotrexate (MTX) causes an inhibition of purine de novo synthesis (PDNS), resulting in increased intracellular availability of 5-phosphoribosyl-1-pyrophosphate (PRPP) in human malignant lymphoblasts with an active PDNS. Normal bone marrow cells and peripheral blood lymphocytes lack this capacity. The increased levels of PRPP can be used for enhanced(More)
Methotrexate (MTX) and 6-mercaptopurine (6MP) are common drugs in the oral maintenance therapy of acute lymphoblastic leukemia (ALL). On the basis of their biochemical effects on cell metabolism, a sequence-dependent synergism might be anticipated. In order to investigate this hypothesis, MOLT-4 human malignant T-lymphoblasts were incubated with various(More)
The effects of methotrexate (MTX) on cytotoxicity (trypan blue exclusion and soft agar clonal growth), cell cycle perturbation, and purine and pyrimidine ribonucleotide and deoxyribonucleotide pools have been studied in MOLT-4 malignant T-lymphoblasts. Two concentrations of MTX, 0.02 microM and 0.2 microM have been utilized, which can be maintained in vivo(More)
MOLT-4 (T-), RAJI (B-), and KM-3 (non-B-non-T-, common ALL) malignant lymphoblasts demonstrated significant differences in their activities of purine de novo synthesis (PDNS) and purine salvage pathway and in their cell-kinetic parameters. Incubations with concentrations of methotrexate (0.02 and 0.2 microM), which can be maintained during many hours in the(More)
  • 1