T. Varslot

Learn More
We derive a new image reconstruction method for distributed apertures operating in complex environments. The aperture elements can be distributed spatially in an arbitrary fashion, can be several hundred wavelengths apart, and can involve transmission from multiple elements simultaneously. Moreover, the object to be imaged can be either in the near-field or(More)
We derive an optimal transmit waveform for filtered backprojection-based synthetic-aperture imaging. The waveform is optimal in terms of min-imising the mean square error (MSE) in the resulting image. Our optimization is performed in two steps: First, we consider the minimum-mean-square-error (MMSE) for an arbitrary but fixed waveform, and derive the(More)
The idea of preconditioning transmit waveforms for optimal clutter rejection in radar imaging is presented. Waveform preconditioning involves determining a map on the space of transmit waveforms, and then applying this map to the waveforms before transmission. The work applies to systems with an arbitrary number of transmit- and receive-antenna elements,(More)
We present a new image reconstruction method for distributed apertures operating in complex environments with additive non-stationary noise. Our method is capable of exploiting information that we might have about: multipath scattering in the environment; statistics of the objects to be imaged; statistics of the additive non-stationary noise. The aperture(More)
  • 1