T. V. Povysheva

Learn More
Exposure to microgravity has been shown to result in damaging alterations to skeletal muscle, bones, and inner organs. In this study, we investigated the effects of microgravity by using a hindlimb unloading model (HUM) in mice. The characteristics of the lumbar spinal cords of HUM mice 30 days after hindlimb unloading were examined. Morphometric analysis(More)
Myelinated fibers and myelin-forming cells in the spinal cord at the L3–L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in “flight” mice. The stay of(More)
Effect of systemic administration of synthetic pyrimidine derivatives, xymedon and compounds 29D and 34D, was studied in rats with experimental dosed contusion spinal cord injury. Xymedon promoted recovery of motor function after injury. Compounds 29D and 34D more effectively restored the parameters of open-field and Rotarod tests in comparison with(More)
157 Staying in a zeroogravity state inevitably leads to the development of the hypogravity motor syndrome (HMS). The most studied symptoms of this syndrome include morphologic and functional abnormalities in skeletal muscles. However, whether nervous tissues participate in the development of HMS is still unclear. Apoptosis was not found in rat motoneurons(More)
  • 1