T. Seidenbecher

Learn More
The amygdalohippocampal circuit plays a pivotal role in Pavlovian fear memory. We simultaneously recorded electrical activity in the lateral amygdala (LA) and the CA1 area of the hippocampus in freely behaving fear-conditioned mice. Patterns of activity were related to fear behavior evoked by conditioned and indifferent sensory stimuli and contexts.(More)
A deficient extinction of memory is particularly important in the regime of fear, where it limits the beneficial outcomes of treatments of anxiety disorders. Fear extinction is thought to involve inhibitory influences of the prefrontal cortex on the amygdala, although the detailed synaptic mechanisms remain unknown. Here, we report that neuropeptide S(More)
In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under(More)
K-Cl co-transporters are encoded by four homologous genes and may have roles in transepithelial transport and in the regulation of cell volume and cytoplasmic chloride. KCC3, an isoform mutated in the human Anderman syndrome, is expressed in brain, epithelia and other tissues. To investigate the physiological functions of KCC3, we disrupted its gene in(More)
The basolateral amygdala (BLA) can influence distinct learning and memory formation. Hippocampal long-term potentiation (LTP), the most prominent cellular model of memory formation, can be modulated by stimulation of the BLA in its induction and early maintenance. However, it is not known how the late maintenance of LTP beyond its initial phases might be(More)
In a rat model of generalized absence epilepsies (Genetic Absence Epilepsy Rats from Strasbourg, GAERS), multiunit activity was recorded simultaneously at different sites of the thalamocortical system under neurolept anaesthesia (fentanyl-droperidol). Under these conditions, bilaterally synchronized spike-and-wave-discharges (SWDs) occurred spontaneously on(More)
Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA) for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC) for extinction processes. While many(More)
Current theories on the encoding and storage of information in the brain commonly suppose that a short-term memory is converted into a lasting one; thus, it becomes consolidated over time. Within a finite period after training, such a short-term memory can be reinforced by behavioral and humoral stimuli. We have found that, long-term potentiation (LTP), a(More)
With a combined in vitro/in vivo electrophysiological and behavioral approach, we have correlated conditioned fear behavior to electrophysiological activities in the lateral amygdala and the hippocampal formation in rodents. Data indicate that projection neurons in the lateral amygdala display a continuum of spike patterns including accommodating patterns,(More)
Theta oscillations are considered crucial mechanisms in neuronal communication across brain areas, required for consolidation and retrieval of fear memories. One form of inhibitory learning allowing adaptive control of fear memory is extinction, a deficit of which leads to maladaptive fear expression potentially leading to anxiety disorders. Behavioral(More)