T. Peter Rakitzis

Learn More
The mechanism for the reaction of atomic chlorine with vibrationally excited methane is investigated by measurement of correlated state and scattering distributions using the method of core extraction see preceding paper . Laser photolysis of molecular chlorine creates monoenergetic chlorine atoms 98% Cl P3/2 that react with vibrationally excited methane(More)
Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from(More)
The production of spin-polarized hydrogen atoms from the photodissociation of hydrogen chloride with circularly polarized 193-nanometer light is inferred from the measurement of the complete angular momentum distributions of ground state Cl(2P3/2)and excited state Cl(2P1/2)cofragments by slice imaging. The experimentally measured and ab initio predicted a(More)
The orientation and alignment of the (2)P(3/2) and (2)P(1/2) Br photofragments from the photodissociation of HBr is measured at 193 nm in terms of a(q) ((k))(p) parameters, using slice imaging. The A (1)Pi state is excited almost exclusively, and the measured a(q) ((k))(p) parameters and the spin-orbit branching ratio show that the dissociation proceeds(More)
Spin-polarized hydrogen (SPH) atoms have traditionally been produced and detected using complex experimental methods with poor time resolution. Recently, SPH has been produced by pulsed-laser photodissociation of HCl using circularly polarized light. In combination with the proposed detection of SPH via polarized fluorescence, this approach should allow the(More)
The concept of geometrical constraints and steric hindrance in reactions is implanted deeply in a chemist's 'chemical intuition'. However, until now a true three-dimensional view of these steric effects has not been realized experimentally for any chemical reaction in full. Here we report the complete three-dimensional characterization of the sterics of a(More)
Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral(More)
We propose the measurement of cavity-enhanced parity-nonconserving (PNC) optical rotation in several transitions of metastable Xe and Hg, including Xe (2P(3/2)(o))6s(2)[3/2](2)(o)→(2P(1/2)(o))6s(2)[1/2](1)(o) and Hg 6s6p (3)P(2)(o)→6s6p (1)P(1)(o), with calculated amplitude ratios of E(1)(PNC)/M1=11×10(-8) and 10×10(-8), respectively. We demonstrate the use(More)
We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 degrees to the orientation direction of the OCS molecules.(More)
We describe a method we call core extraction for measuring the speed distributions of products from photoinitiated bimolecular reactions for the purpose of determining state-to-state differential cross sections. Core extraction is demonstrated by determination of the state-to-state differential cross section for the reaction Cl CH4 3 1 →HCl 1, J 1 CH3. The(More)