Learn More
Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by(More)
In peripheral nerves MSCs can modulate Wallerian degeneration and the overall regenerative response by acting through paracrine mechanisms directly on regenerating axons or upon the nerve-supporting Schwann cells. In the present study, the effect of human MSCs from Wharton's jelly (HMSCs), differentiated into neuroglial-like cells associated to poly(More)
We describe how an appropriate interpretation of the Q-test depends on its power to detect a given typical amount of between-study variance (τ(2)) as well as prior beliefs on heterogeneity. We illustrate these concepts in an evaluation of 1011 meta-analyses of clinical trials with ⩾4 studies and binary outcomes. These concepts can be seen as an application(More)
Genetic effects for common variants affecting complex disease risk are subtle. Single genome-wide association (GWA) studies are typically underpowered to detect these effects, and combination of several GWA data sets is needed to enhance discovery. The authors investigated the properties of the discovery process in simulated cumulative meta-analyses of GWA(More)
We investigate the collective dynamics of bursting neurons on clustered networks. The clustered network model is composed of subnetworks, each of them presenting the so-called small-world property. This model can also be regarded as a network of networks. In each subnetwork a neuron is connected to other ones with regular as well as random connections, the(More)
Spontaneous explosive emergent behavior takes place in heterogeneous networks when the frequencies of the nodes are positively correlated to the node degree. A central feature of such explosive transitions is a hysteretic behavior at the transition to synchronization. We unravel the underlying mechanisms and show that the dynamical origin of the hysteresis(More)
– We present an approach which enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. In particular, we show that this approach is fruitful to analyze the onset of phase(More)
We analyze the effect of synchronization in networks of chemically coupled multi-timescale (spiking-bursting) neurons on the process of information transmission within the network. Although, synchronization occurs first in the slow timescale (burst) and then in the fast timescale (spike), we show that information can be transmitted with low probability of(More)
We study the emergence of coherence in complex networks of mutually coupled nonidentical elements. We uncover the precise dependence of the dynamical coherence on the network connectivity, the isolated dynamics of the elements, and the coupling function. These findings predict that in random graphs the enhancement of coherence is proportional to the mean(More)
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve(More)