T. P. Radhakrishnan

Learn More
A sago starch biopolymer with embedded silver nanoparticles has been studied as a material for the prevention of microbial growth. Approximately 8 nm in size, silver nanoparticles have been synthesized by reduction of the silver salt in aqueous solution in the presence of sago starch using sodium borohydride as a reducing agent. The obtained solutions were(More)
Metal nanoparticle-polymer composites are versatile materials which not only combine the unique characteristics of the components, but also manifest mutualistic effects between the two. Embedding inside polymer thin films facilitates immobilization and organization of the metal nanoparticles and tuning of their electronic and optical responses by the(More)
Detection of mercury at concentration levels down to parts-per-billion is a problem of fundamental and practical interest due to the high toxicity of the metal and its role in environmental pollution. The extensive research in this area has been focused primarily on specific sensing of mercuric (Hg(2+)) ion. As mercury exists in the oxidation states, +2, +1(More)
Polygonal gold nanoplates are generated in situ in poly(vinyl alcohol) film through thermal treatment, the polymer serving as the reducing agent and stabilizer for the nanoparticle formation and enforcing preferential orientation of the plates. The rare pentagonal as well as the more commonly observed hexagonal, triangular and square/rectangle shapes are(More)
The interaction of N-myristoylethanolamine (NMEA) with cholesterol is investigated by differential scanning calorimetry (DSC), fast-atom-bombardment mass spectrometry (FAB-MS) and computational modelling. Addition of cholesterol to NMEA leads to a new phase transition at 55 degrees C besides the chain-melting transition of NMEA at 72.5 degrees C. The(More)
A synthetic procedure for the encapsulation of cadmium selenide (CdSe) nanoparticles in a sago starch matrix is introduced. The nanocomposite was investigated using structural, spectroscopic, and thermal methods. TEM micrographs of the nanocomposite showed spherical CdSe particles of 4-5 nm in size coated with a biopolymer layer. The absorption edges of(More)
Silver (Ag) and silver sulfide (Ag(2)S) nanoparticles were synthesized in a sago starch matrix. The resulting nanocomposites were investigated using structural, optical and thermal methods. XRD spectra of the nanocomposites confirmed the presence of nanostructured silver (cubic phase) and silver sulfide (monoclinic phase) in the matrix. TEM micrographs(More)
We report the preparation of CdS nanorods using a thiosemicarbazide complex of cadmium [Cd(NH2CSNHNH2)2Cl2]. The precursor was decomposed in tri-n-octylphosphine oxide (TOPO) at 280 degrees C to give TOPO capped CdS nanoparticles; nano-dimensional rods of the material are clearly visible in transmission electron microscopy (TEM); the particles have been(More)
Adsorption of sulfide ions onto a surface of starch capped silver nanoparticles upon addition of thioacetamide was investigated. UV-vis absorption spectroscopy revealed that the adsorption of the sulfide ion on the surface of the silver nanoparticles induced damping as well as blue shift of the silver surface plasmon resonance band. Further increase in(More)