Learn More
Dynamic deformational loading has been shown to significantly increase the development of material properties of chondrocyte-seeded agarose hydrogels, however little is known about the spatial development of the material properties within these constructs. In this study, a technique that combines video microscopy and optimized digital image correlation, was(More)
Oral non-absorbable antibiotics work by decreasing intraluminal bacterial content after mechanical bowel preparation. The advantage of adding oral non-absorbable antibiotics to intravenous antibiotics to decrease surgical site infection (SSI) after colorectal surgery is not well known. We conducted a meta-analysis of randomized controlled trials (RCT)(More)
Inspired by the depth-dependent inhomogeneity of articular cartilage, it was hypothesized that a novel layered agarose technique, using a 2% (wt/vol) top and a 3% (wt/vol) bottom layer, would create an inhomogenous tissue construct with distinct material properties in conjoined regions. The biochemical and mechanical development of these constructs was(More)
This study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous(More)
Interstitial fluid pressurization plays an important role in cartilage biomechanics and is believed to be a primary mechanism of load support in synovial joints. The objective of this study was to investigate the effects of enzymatic degradation on the interstitial fluid load support mechanism of articular cartilage in unconfined compression. Thirty-seven(More)
Chondrocytes embedded in agarose and subjected to dynamic deformational loading produce a functional matrix with time in culture, but there is usually a delay in the development of significant differences compared to free swelling. In this study, we hypothesized that the initial presence of a cell-associated matrix would expedite construct development in(More)
High-serum media have been shown to produce significant improvement in the properties of tissue-engineered articular cartilage when applied in combination with dynamic deformational loading. To mitigate concerns regarding the culture variability introduced by serum, we examined the interplay between low-serum/ITS-supplemented media and dynamic deformational(More)
The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different(More)
Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor(More)
BACKGROUND In osteoarthritis, chondrocytes adopt an abnormal hypertrophic morphology and upregulate the expression of the extracellular matrix-degrading enzymes, MMP-13 and ADAMTS-5. The activation of the hedgehog signalling pathway has been established in osteoarthritis and is thought to influence both of these processes. However, the role of this pathway(More)