T N Jaishree

Learn More
The solution of a primary 16S rRNA-binding ribosomal protein, S17, was investigated by two- and three-dimensional homonuclear and heteronuclear magnetic resonance spectroscopy. Almost complete chemical shift assignments for the 1H, 15N, and 13C resonances have been obtained. The NMR data have been rigorously analyzed using a combination of distance(More)
RNA and DNA adopt different types of conformations, i.e., A-type with C3'-endo sugar pucker for RNA and B-type with C2'-endo sugar pucker for DNA, respectively. The structural influence of the incorporation of RNA nucleotides into DNA is less understood. In this paper, we present the three-dimensional structures of two RNA-containing oligonucleotides,(More)
Alternating (C-T)n sequences are involved in the H-DNA structure associated with (GA)n.(CT)n sequences. Low pH values facilitate H-DNA formation. We have undertaken a detailed analysis of the structural consequences of the (C-T)n sequence as a function of pH. The structures of three DNA oligonucleotides, d(CT)4, d(TC)4 and d(TC)15, have been studied by NMR.(More)
The structures of the (C-T)n sequence at two different pHs have been analyzed by 500 MHz 2D-NMR using a modified DNA decamer d(CT[m5C]TCU[m5C]UCT) as a model system. The chemical modifications serve to perturb the monotonous C-T repeat, and consequently to yield a better chemical shift dispersion. The results reinforce our earlier suggestion that there are(More)
After a long hiatus, the pace of determination of the structures of ribosomal proteins has accelerated dramatically. We discuss here the structures of five ribosomal proteins from Bacillus stearothermophilus: S5, S17, L6, L9, and L14. These structures represent several new motifs. Each of these structures has revealed new insights, and we have developed(More)
Nine DNA sequences related to the purine strand of the human centromeric satellite (AATGG)n (CCATT)n repeat have been studied by two-dimensional nuclear magnetic resonance spectroscopy. Earlier studies have suggested that the structure of (AATGG)n sequence has an equilibrium between the duplex form and a fold-back form. Structural refinement of d(CAATGG)(More)
  • 1