T. Martin McGinnity

Learn More
This paper presents a new on-line algorithm for creating a self-organizing fuzzy neural network (SOFNN) from sample patterns to implement a singleton or Takagi-Sugeno (TS) type fuzzy model. The SOFNN is based on ellipsoidal basis function (EBF) neurons consisting of a center vector and a width vector. New methods of the structure learning and the parameter(More)
A novel hybrid learning algorithm based on a genetic algorithm to design a growing fuzzy neural network, named self-organizing fuzzy neural network based on genetic algorithms (SOFNNGA), to implement Takagi-Sugeno (TS) type fuzzy models is proposed in this paper. A new adding method based on geometric growing criterion and the epsiv-completeness of fuzzy(More)
In an increasingly competitive marketplace system complexity continues to grow, but time-to-market and lifecycle are reducing. The purpose of fault diagnosis is the isolation of faults on defective systems, a task requiring a high skill set. This has driven the need for automated diagnostic tools. Over the last two decades, automated diagnosis has been an(More)
Limits on synaptic efficiency are characteristic of biological neural networks. In this paper, weight limitation constraints are applied to the spike time error-backpropagation (SpikeProp) algorithm for temporally encoded networks of spiking neurons. A novel solution to the problem raised by non-firing neurons is presented which makes the learning algorithm(More)
This paper presents a strategy for the implementation of large scale spiking neural network topologies on FPGA devices based on the I&F conductance model. Analysis of the logic requirements demonstrate that large scale implementations are not viable if a fully parallel implementation strategy is utilised. Thus the paper presents an alternative approach(More)
Existing models for document summarization mostly use the similarity between sentences in the document to extract the most salient sentences. The documents as well as the sentences are indexed using traditional term indexing measures, which do not take the context into consideration. Therefore, the sentence similarity values remain independent of the(More)
Inspired by the behaviour of biological receptive fields and the human visual system, a network model based on spiking neurons is proposed to detect edges in a visual image. The structure and the properties of the network are detailed in this paper. Simulation results show that the network based on spiking neurons is able to perform edge detection within a(More)
This paper introduces a number of modifications to the learning algorithm of the self-organizing fuzzy neural network (SOFNN) to improve computational efficiency. It is shown that the modified SOFNN favorably compares to other evolving fuzzy systems in terms of accuracy and structural complexity. An analysis of the SOFNN's effectiveness when applied in an(More)