Learn More
The piezoelectronic transistor (PET) has been proposed as a transduction device not subject to the voltage limits of field-effect transistors. The PET transduces voltage to stress, activating a facile insulator-metal transition, thereby achieving multigigahertz switching speeds, as predicted by modeling, at lower power than the comparable generation field(More)
Ultra low-k (ULK, k=2.4) dielectric has weaker mechanical properties than first generation low-k films (k=3.0). The introduction of ULK into advanced back end of lines (BEOL) presents a significant challenge due to chip package interaction (CPI) where the packaged die is cycled over a temperature range and the resulting stress can cause ULK BEOL(More)
Sophisticated microelectromechanical systems for device and sensor applications have flourished in the past decade. These devices exploit piezoelectric, capacitive, and piezoresistive effects, and coupling between them. However, high-performance piezoresistivity (as defined by on/off ratio) has primarily been observed in macroscopic single crystals. In this(More)
The adoption of ultra-low k dielectric materials in the pursuit of greater performance will pose reliability challenges quite unlike what we have previously experienced. The ultra-low k (ULK) dielectrics are completely different from the materials we have traditionally used. Unfortunately, the properties that make them desirable from an electrical point of(More)
High-resolution transmission electron microscopes operating at 300 and 400 kV were used to investigate the crystallography and microstructure of the perovskitelike YBa2Cu3O7-x. In this paper, we evaluate the performance attainable with these microscopes both empirically and by computer modelling. Based upon the assumption that oxygen may be a key to(More)
A combination of chemical vapor deposition and scanning tunneling microscopy techniques have been used to produce nanometer-scale, iron-containing deposits with high aspect ratios from an iron pentacarbonyl precursor both on a substrate and on the tunneling tip itself. The structure and composition of the resulting nanodeposits were determined by(More)
Using high-resolution multibeam interference techniques in the transmission electron microscope, images have been obtained that make possible a real-space structure analysis of a beryllium-silicon-nitrogen compound. The results illustrate the usefulness of lattice imaging in the analysis of local crystal structure in these technologically promising ceramic(More)
Many of the forest soils in the Intermountain West are deficient in several nutrients, including nitrogen (N), potassium (K), sulfur (S) and boron (B) and these deficiencies may impact tree resistance to insect attack. Two potential techniques for manipulating tree resistance are fertilization and thinning. We examined fertilization (both alone and in(More)