Learn More
We propose a mathematical formulation for the notion of optimal projective cluster, starting from natural requirements on the density of points in subspaces. This allows us to develop a Monte Carlo algorithm for iteratively computing projective clusters. We prove that the computed clusters are good with high probability. We implemented a modified version of(More)
We propose a representation for gene expression data called conserved gene expression motifs or XMOTIFs. A gene's expression level is conserved across a set of samples if the gene is expressed with the same abundance in all the samples. A conserved gene expression motif is a subset of genes that is simultaneously conserved across a subset of samples. We(More)
The advent of high-throughput biology has catalyzed a remarkable improvement in our ability to identify new genes. A large fraction of newly discovered genes have an unknown functional role, particularly when they are specific to a particular lineage or organism. These genes, currently labeled "hypothetical," might support important biological cell(More)
Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many pathogens. However, many questions are relatively unexplored. What are the properties of human proteins that interact with pathogens? Do pathogens interact with certain functional classes of human proteins? Which infection mechanisms and(More)
RankGene is a program for analyzing gene expression data and computing diagnostic genes based on their predictive power in distinguishing between different types of samples. The program integrates into one system a variety of popular ranking criteria, ranging from the traditional t-statistic to one-dimensional support vector machines. This flexibility makes(More)
MOTIVATION Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which(More)
Protein-protein interactions (PPIs) play a vital role in initiating infection in a number of pathogens. Identifying which interactions allow a pathogen to infect its host can help us to understand methods of pathogenesis and provide potential targets for therapeutics. Public resources for studying host-pathogen systems, in particular PPIs, are scarce. To(More)
Consistent repreaentations of the boundary and interior of thredimensional solid objects are required by applications ramging from interactive visualization to finite element analysis. However, most commonly available models of solid objects contain errors and inconsistencies. We describe an algorithm that automatically constructs consistent representations(More)
BACKGROUND Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these(More)
BACKGROUND Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. METHODOLOGY We(More)