Learn More
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive(More)
RNA interference (RNAi) is a mechanism by which double-stranded RNAs (dsRNAs) suppress specific transcripts in a sequence-dependent manner. dsRNAs are processed by Dicer to 21-24-nucleotide small interfering RNAs (siRNAs) and then incorporated into the argonaute (Ago) proteins. Gene regulation by endogenous siRNAs has been observed only in organisms(More)
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and,(More)
BACKGROUND Because the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed. RESULTS In this study, we evaluated genetic features of this breed, including single nucleotide(More)
Nanog is a novel pluripotential cell-specific gene that plays a crucial role in maintaining the undifferentiated state of early postimplantation embryos and embryonic stem (ES) cells. We have explored the expression pattern and function of Nanog and a Nanog-homologue, Nanog-ps1.Nanog-ps1 was mapped on Chromosome 7 and shown to be a pseudogene.(More)
Only mammals have relinquished parthenogenesis, a means of producing descendants solely from maternal germ cells. Mouse parthenogenetic embryos die by day 10 of gestation. Bi-parental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis. This leads to unequal expression of imprinted genes from the(More)
DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several(More)
Induced pluripotent stem cells (iPSCs) have been generated by enforced expression of defined sets of transcription factors in somatic cells. It remains controversial whether iPSCs are molecularly and functionally equivalent to blastocyst-derived embryonic stem (ES) cells. By comparing genetically identical mouse ES cells and iPSCs, we show here that their(More)
Fifty-one lactic acid bacteria (LAB) strains were isolated and identified based on 16S ribosomal DNA sequence from the intestinal tracts of 142 kuruma shrimps (Marsupenaeus japonicus) collected from Kanmon Strait, Fukuoka and Tachibana Bay, Nagasaki, Japan. Cellular immunomodulatory function of 51 isolated LAB strains was assessed by measuring the level of(More)
Nuclear reprogramming is essential during gametogenesis for the production of totipotent zygotes. Here we show that premeiotic female germ cells derived from mouse fetuses as early as 12.5 days post coitum are able to complete meiosis and genomic imprinting in vitro and that these matured oocytes are highly competent in supporting development to full term(More)