Learn More
Twenty percent of the familial form of amyotrophic lateral sclerosis (ALS) is caused by mutations in the Cu, Zn-superoxide dismutase gene (SOD1) through the gain of a toxic function. The nature of this toxic function of mutant SOD1 has remained largely unknown. Here we show that WT SOD1 not only hastens onset of the ALS phenotype but can also convert an(More)
Glaucoma, the second most prevalent cause of blindness worldwide, is a degenerative disease characterized by loss of vision due to loss of retinal ganglion cells. There is no cure for glaucoma, but early intervention with drugs and/or surgery may slow or halt loss of vision. Increased intraocular pressure (IOP), age, and genetic background are the leading(More)
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the(More)
PURPOSE In the central nervous system (CNS), increased mitochondrial DNA (mtDNA) damage is associated with aging and may underlie, contribute to, or increase the susceptibility to neurodegenerative diseases. Because of the focus on the retinal pigment epithelium (RPE) and choroid as tissue relevant to age-related macular degeneration (AMD), we examined(More)
PURPOSE Iron accumulation with age in the retinal pigment epithelium (RPE) may be one important source of oxidative stress that contributes to age-related macular degeneration (AMD). Young and old rodent RPE/choroid were compared to assess iron homeostasis during normal aging and the effects of increased iron on the functions of retinal pigment epithelial(More)
The first primary structure for a nonmuscle myosin light chain kinase (nmMLCK) has been determined by elucidation of the cDNA sequence encoding the protein kinase from chicken embryo fibroblasts, and insight into the molecular mechanism of calmodulin (CaM) recognition and activation has been obtained by the use of site-specific mutagenesis and suppressor(More)
An apparent paradox in smooth muscle biology is the ability of unphosphorylated myosin to maintain a filamentous structure in the presence of ATP in vivo, whereas unphosphorylated myosin filaments are depolymerized in vitro in the presence of ATP. This suggests that additional uncharacterized factors are required for the stabilization of myosin filaments in(More)
BACKGROUND Although the statement that age is the greatest risk factor for Age-related macular degeneration (AMD) is widely accepted, the cellular and molecular explanations for that clinical statement are not generally known. A major focus of AMD research is the retinal pigment epithelium (RPE)/choroid. The purpose of this study was to characterize the(More)
Myosin light chain kinase (MLCK) is the key regulator of cell motility and smooth muscle contraction in higher vertebrates. We searched for the features of the high molecular weight MLCK (MLCK-210) associated with its unique N-terminal sequence not found in a more ubiquitous lower molecular weight MLCK (MLCK-108). MLCK-210 demonstrates stronger association(More)
The apical and principal segments of the bovine acrosome contain a stable matrix complex that is bound to the outer acrosomal membrane and exhibits hydrolase-binding activity. The present study was undertaken to determine whether the outer acrosomal membrane-associated matrix complex (OMC) is composed of a unique set of acrosomal proteins and to define its(More)