Learn More
Materials that can be described as respirable granular biodurable particles without known significant specific toxicity (GBP) show a common mode of toxicological action that is characterized by inflammation and carcinogenicity in chronic inhalation studies in the rat. This study was carried out to compare the carcinogenic potency of GBP nanomaterials(More)
Part of the northern Palatinate region in Germany is characterized by elevated levels of arsenic and antimony in the soil due to the presence of ore sources and former mining activities. In a biomonitoring study, 218 residents were investigated for a putative increased intake of these elements. Seventy-six nonexposed subjects in a rural region in south(More)
Data on the mechanism of antimony genotoxicity is scarce. Arsenic and antimony are proposed to share some toxicological features. Thus comparative and combined experiments with As(III) and Sb(III) were performed to gain a deeper knowledge of the mechanism of antimony genotoxicity. Trivalent arsenic proved to be five times more cytotoxic and one order of(More)
Nanotechnology offers enormous potential for technological progress. Fortunately, early and intensive efforts have been invested in investigating toxicology and safety aspects of this new technology. However, despite there being more than 6,000 publications on nanotoxicology, some key questions still have to be answered and paradigms need to be challenged.(More)
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a(More)
Strong ultraviolet electroluminescence with an external quantum efficiency above 1% is observed from an indium-tin oxide/SiO 2 : Gd/ Si metal–oxide–semiconductor structure. The SiO 2 : Gd active layer is prepared by thermal oxidation followed by Gd + implantation and annealing. The electroluminescence spectra show a sharp peak at 316 nm from the 6 P 7/2 to(More)
Sub-second annealing is one of the key issues to meet the requirements of the 45 nm technology node according to the ITRS roadmap. Therefore, over the past decade there has been great interest in techniques such as laser and flash lamp annealing (FLA). In addition, advanced ultra-fast annealing shows promise for technologies that are not directly related to(More)