Learn More
Glioblastoma, the most malignant form of brain cancer, is responsible for 23% of primary brain tumors and has extremely poor outcome. Confounding the clinical management of glioblastomas is the extreme local invasiveness of these cancer cells. The mechanisms that govern invasion are poorly understood. To gain insight into glioblastoma invasion, we conducted(More)
To reveal molecular drivers of glioma invasion, two distinct glioblastoma (GBM) cell phenotypes (invading cells and tumor core cells) were collected from 19 GBM specimens using laser capture microdissection. Isolated RNA underwent whole human genome expression profiling to identify differentially expressed genes. Pathway enrichment analysis highlighted the(More)
Gliomas are the most common intracranial tumors. In the US, approximately 15,000 patients die with glioblastoma per year (CBTRUS 2002). Despite modern diagnostics and treatments the median survival time does not exceed 15 months. However, it has long been observed that after surgical removal, tumors recur predominantly within 1 cm of the resection cavity.(More)
Microarray analysis of complementary DNA (cDNA) allows large-scale, comparative, gene expression profiling of two different cell populations. This approach has the potential for elucidating the primary transcription events and genetic cascades responsible for increased glioma cell motility in vitro and invasion in vivo. These genetic determinants could(More)
PURPOSE To estimate the maximum-tolerated dose (MTD), describe dose-limiting toxicities (DLTs), and characterize pharmacokinetic properties of MK-0752, a gamma secretase inhibitor, in children with refractory or recurrent CNS malignancies. PATIENTS AND METHODS MK-0752 was administered once daily for 3 consecutive days of every 7 days at escalating dosages(More)
Glioblastoma multiforme is the most common and lethal primary malignant brain tumor. Although considerable progress has been made in technical proficiencies of surgical and radiation treatment for brain tumor patients, the impact of these advances on clinical outcome has been disappointing, with median survival time not exceeding 15 months. Over the last 30(More)
Invasion is a defining hallmark of glioblastoma multiforme, just as metastasis characterizes other high-grade tumors. Glial tumors invariably recur due to the regrowth of invasive cells, which are unaffected by standard treatment modalities. Drivers of glioma invasion include autocrine signals propagated by secreted factors that signal through receptors on(More)
Glioma cells that migrate out of the main tumor mass into normal brain tissue contribute to the failure of most gliomas to respond to treatment. Treatments that target migratory glioma cells may enhance the therapeutic response. Multiple lines of evidence suggest that suppression of apoptosis accompanies activation of the migratory phenotype. Here, we(More)
PURPOSE Aberrant Notch signaling has been implicated in the pathogenesis of many human cancers. MK-0752 is a potent, oral inhibitor of γ-secretase, an enzyme required for Notch pathway activation. Safety, maximum-tolerated dose, pharmacokinetics (PKs), pharmacodynamics, and preliminary antitumor efficacy were assessed in a phase I study of MK-0752. (More)
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the(More)