Learn More
Evolution of a coronal loop in response to an impulsive energy release is numerically modelled. It is shown that the loop density evolution curves exhibit quasi-periodic perturbations with the periods given approximately by the ratio of the loop length to the average sound speed, associated with the second standing harmonics of an acoustic wave. The density(More)
A novel absorption mechanism for linearly polarized lasers propagating in relativistically underdense solids in the ultrarelativistic (a ~ 100) regime is presented. The mechanism is based on strong synchrotron emission from electrons reinjected into the laser by the space charge field they generate at the front of the laser pulse. This laser absorption,(More)
Long period longitudinal oscillations of a flaring coronal loop are studied numerically. In the recent work of Nakariakov et al. (2004) it has been shown that the time dependence of density and velocity in a flaring loop contain pronounced quasi-harmonic oscillations associated with the 2nd harmonic of a standing slow magnetoacoustic wave. In this work we(More)
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation (resistivity) and viscosity. The presence of neutral atoms in the partially ionized(More)
In simulations of a 10 PW laser striking a solid, we demonstrate the possibility of producing a pure electron-positron plasma by the same processes as those thought to operate in high-energy astrophysical environments. A maximum positron density of 10(26) m(-3) can be achieved, 7 orders of magnitude greater than achieved in previous experiments.(More)
Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions. Early electromagnetic codes used the Yee staggered grid for field variables combined with a leapfrog EM-field update and the Boris algorithm for particle pushing. The general properties of such schemes are well documented. Modern PIC codes tend to add to these(More)
The weakly nonlinear dynamics of linearly polarized, spherical Alfvén waves in coronal holes is investigated. An evolutionary equation, combining the effects of spherical stratification, nonlinear steepening and dissipation due to shear viscosity is derived. The equation is a spherical analog of the scalar Cohen–Kulsrud–Burgers equation. Three main stages(More)