T. Christian Gasser

Learn More
BACKGROUND The molecular mechanisms underlying the progression of prostate cancer during hormonal therapy have remained poorly understood. In this study, we developed a new strategy for the identification of differentially expressed genes in hormone-refractory human prostate cancer by use of a combination of complementary DNA (cDNA) and tissue microarray(More)
Abdominal aortic aneurysms (AAAs) are frequently characterized by the development of an intra-luminal thrombus (ILT), which is known to have multiple biochemical and biomechanical implications. Development of the ILT is not well understood, and shear-stress-triggered activation of platelets could be the first step in its evolution. Vortical structures (VSs)(More)
Many genes and signaling pathways are involved in renal cell carcinoma (RCC) development. However, genetic tumor markers have not gained use in RCC diagnostics and prognosis prediction. Identification and evaluation of new molecular parameters are of utmost importance in cancer research and cancer treatment. Here we present a novel approach to rapidly(More)
To identify genetic changes linked to bladder cancer progression we analyzed 90 invasive transitional cell carcinomas (37 pT1 and 53 pT2-4) by comparative genomic hybridization. The most frequent alterations included 1q+ (37%), 5p+ (24%), 6q- (19%), 8p-(29%), 8q+ (37%), 9p- (31%), 9q- (23%), 11p-(24%), 11q- (22%), 17q+ (29%), and 20q+ (28%). Interestingly,(More)
BACKGROUND The predictions of stress fields in Abdominal Aortic Aneurysm (AAA) depend on constitutive descriptions of the aneurysm wall and the Intra-luminal Thrombus (ILT). ILT is a porous diluted structure (biphasic solid-fluid material) and its impact on AAA biomechanics is controversially discussed in the literature. Specifically, pressure measurements(More)
Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists(More)
Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However,(More)
Evaluating rupture risk of abdominal aortic aneurysms is critically important in reducing related mortality without unnecessarily increasing the rate of elective repair. According to the current clinical practice aneurysm rupture risk is (mainly) estimated from its maximum diameter and/or expansion rate; an approach motivated from statistics but known to(More)
Intraluminal thrombus (ILT) is a pseudo-tissue that develops from coagulated blood, and is found in most abdominal aortic aneurysms (AAAs) of clinically relevant size. A number of studies have suggested that ILT mechanical characteristics may be related to AAA risk of rupture, even though there is still great controversy in this regard. ILT is isotropic and(More)
The biomechanical factors that result from the haemodynamic load on the cardiovascular system are a common denominator of several vascular pathologies. Thickening and calcification of the aortic valve will lead to reduced opening and the development of left ventricular outflow obstruction, referred to as aortic valve stenosis. The most common pathology of(More)