Learn More
Meal feeding is a critical issue in the over-consumption of calories leading to human obesity. To investigate the mechanisms involved in the regulation of meal feeding in rodents, we studied a scheduled feeding regime that induces substantial food intake over short periods of time. Male Sprague-Dawley rats and C57BL6 mice were fed one of four palatable(More)
Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in(More)
Male C57BL/6 mice fed ad libitum on control diet but allowed access to a palatable high fat diet (HFD) for 2 h a day during the mid-dark phase rapidly adapt their feeding behaviour and can consume nearly 80% of their daily caloric intake during this 2 h-scheduled feed. We assessed food intake microstructure and meal pattern, and locomotor activity and(More)
As the pace of advance in biomedical science continues to quicken, it is increasingly important for scientists to engage directly with the public, and indeed many funding bodies are beginning to require their funded researchers to participate in public engagement activities. In the UK, the concept of engaging the public with science was largely initiated by(More)
We sought to determine whether the orexigenic hormone, ghrelin, is involved in the intrinsic regulation of food choice in rats. Ghrelin would seem suited to serve such a role given that it signals hunger information from the stomach to brain areas important for feeding control, including the hypothalamus and reward system (e.g. ventral tegmental area, VTA).(More)
Intra-uterine growth restriction (IUGR) is involved in developmental metabolic programming and here we test the hypothesis that IUGR affects the developing hypothalamic energy balance regulatory pathways in a sex-specific manner. This experiment investigated early postnatal hypothalamic gene expression for six primary leptin- and insulin-sensitive(More)
Hypothalamic homeostatic and forebrain reward-related genes were examined in the context of scheduled meal feeding without caloric restriction in C57BL/6 mice. Mice fed ad libitum but allowed access to a palatable high-fat (HF) diet for 2 hours a day rapidly adapted their feeding behaviour and consumed approximately 80% of their daily caloric intake during(More)
Ghrelin, an orexigenic hormone released from the empty stomach, provides a gut-brain signal that promotes many appetitive behaviours, including anticipatory and goal-directed behaviours for palatable treats high in sugar and/or fat. In the present study, we aimed to determine whether ghrelin is able to influence and/or may even have a role in binge-like(More)
Feelings of hunger carry a negative-valence (emotion) signal that appears to be conveyed through agouti-related peptide (AgRP) neurons in the hypothalamic arcuate nucleus. The circulating hunger hormone, ghrelin, activates these neurons although it remains unclear whether it also carries a negative-valence signal. Given that ghrelin also activates pathways(More)
Intra-uterine growth restriction (IUGR) predisposes obesity in adulthood. This may be due to altered fetal nutrition causing sustained changes within the developing hypothalamic energy balance regulatory system. Using our established ovine model of IUGR, 130-day singleton fetuses (term=147 days) were obtained from growing adolescent mothers on control(More)
  • 1