Learn More
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings. 1. Sun leaves of the beech possess a(More)
To get some insight into the regulatory mechanisms controlling the sterol branch of the mevalonate pathway, tobacco (Nicotiana tabacum cv Bright Yellow-2) cell suspensions were treated with squalestatin-1 and terbinafine, two specific inhibitors of squalene synthase (SQS) and squalene epoxidase, respectively. These two enzymes catalyze the first two steps(More)
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While(More)
Plants are capable of synthesizing a myriad of isoprenoids and prenyl lipids. Much attention has been focused on 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the enzyme that synthesizes mevalonate and is generally considered responsible for the regulation of substrate flux to isoprenoids. In contrast to vertebrates, where there seems to exist only one(More)
Study of the incorporation of 13C-labelled glucose or pyruvate into the isoprenoids of tobacco BY-2 cells allowed the biosynthetic origin of isopentenyl diphosphate to be determined. Sterols synthesized in the cytoplasm and the prenyl chain of ubiquinone Q10 located in mitochondria were derived from the same isopentenyl diphosphate pool, synthesized from(More)
In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after(More)
3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is an enzyme in mevalonate biosynthesis. In plants, investigations have focused on HMG CoA reductase (HMGR) and less is known of the preceding enzyme, HMGS. To understand the regulation of HMGS, we have isolated a Brassica juncea cDNA encoding HMGS, BjHMGS1, for use as a hybridization probe in Northern(More)
In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to(More)
Mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, was used to study the importance of mevalonic acid (MVA) for cell cycle progression of tobacco (Nicotiana tabacum L.) BY-2 cells. After treatment with 5 microM mevinolin, the cell cycle progression was completely blocked and two cell populations accumulated (80% in phase G0/G1 and 20% in(More)