Learn More
Independent component analysis (ICA) is a technique that attempts to separate data into maximally independent groups. Achieving maximal independence in space or time yields two varieties of ICA meaningful for functional MRI (fMRI) applications: spatial ICA (SICA) and temporal ICA (TICA). SICA has so far dominated the application of ICA to fMRI. The(More)
Independent component analysis (ICA) has become an increasingly utilized approach for analyzing brain imaging data. In contrast to the widely used general linear model (GLM) that requires the user to parameterize the data (e.g. the brain's response to stimuli), ICA, by relying upon a general assumption of independence, allows the user to be agnostic(More)
Multivariate analysis methods such as independent component analysis (ICA) have been applied to the analysis of functional magnetic resonance imaging (fMRI) data to study brain function. Because of the high dimensionality and high noise level of the fMRI data, order selection, i.e., estimation of the number of informative components, is critical to reduce(More)
The Motor-Free Visual Perception Test, revised (MVPT-R), provides a measure of visual perceptual processing. It involves different cognitive elements including visual discrimination, spatial relationships, and mental rotation. We adapted the MVPT-R to an event-related functional MRI (fMRI) environment to investigate the brain regions involved in the(More)
Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi-subject ICA approaches estimating subject-specific time courses (TCs) and spatial maps (SMs) have been(More)
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators(More)
We introduce and apply a synthesis/analysis model for analyzing functional Magnetic Resonance Imaging (fMRI) data using independent component analysis (ICA). Our model assumes statistically independent spatial sources in the brain. We also assume that the fMRI scanner acquires overdetermined data such that there are more time points than brain sources. We(More)
Independent component analysis (ICA) is a data-driven approach utilizing high-order statistical moments to find maximally independent sources that has found fruitful application in functional magnetic resonance imaging (fMRI). Being a blind source separation technique, ICA does not require any explicit constraints upon the fMRI time courses. However, for(More)
—A novel (differential) entropy estimator is introduced where the maximum entropy bound is used to approximate the en-tropy given the observations, and is computed using a numerical procedure thus resulting in accurate estimates for the entropy. We show that such an estimator exists for a wide class of measuring functions, and provide a number of design(More)
We propose a new entropy rate estimator for a second and/or higher-order correlated source by modeling it as the output of a linear filter, which can be mixed-phase, driven by Gaussian or non-Gaussian noise. Based on this estimator, we develop a new spatiotemporal blind source separation (BSS) algorithm, full BSS (FBSS), by minimizing the entropy rate of(More)