Szymon Smolarek

Learn More
Infrared spectroscopy provides a means to determine the intrinsic geometrical structures of molecules. Here we present a novel spectroscopic method that uses superfluid helium nanodroplets to record IR spectra of cold molecular ions, in this particular case aniline cations. The method is based on the detection of ions that are ejected from the helium(More)
We report on the first successful high-resolution spectroscopic studies on isolated para-coumaric acid, the chromophore of the photoactive yellow protein which has become a model system for studying biological light-induced signal transduction. Employing various double-resonance multiphoton ionization techniques in combination with mass-resolved ion(More)
UV excitation and IR absorption spectroscopy on jet-cooled molecules is used to study the conformational heterogeneity of methyl 4-hydroxycinnamate, a model chromophore of the Photoactive Yellow Protein (PYP), and to determine the spectroscopic properties of the various conformers. UV-UV depletion spectroscopy identifies four different species with distinct(More)
The photophysics of a prototypical cross-conjugated π-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We find that the excitation spectrum of S(1) displays extensive(More)
The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work(More)
We report on the results of high-resolution spec-troscopic studies on the 4-hydroxystyrene-CO(2) cluster. We show that these clusters are generated upon heating of para-coumaric acid, the chromophore of the photoactive yellow protein (PYP), as the result of a thermal decarboxylation process. Since the mass of the cluster and the starting material are the(More)
High-resolution Resonance Enhanced MultiPhoton Ionization (REMPI) and Laser Induced Fluorescence (LIF) excitation spectra of jet-cooled methyl-4-hydroxycinnamate, methyl-4-OD-cinnamate, and of their water clusters have been recorded. Whereas water complexation leads to significant linewidth narrowing, isotopic substitution does for all practical purposes(More)
Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the(More)
High-resolution absorption spectra of adenine, 9-methyladenine and 2-aminopurine in helium nanodroplets have been recorded. In contrast to molecular beam experiments, large variations in linewidths are observed for adenine and 9-methyladenine. At the same time, the spectrum of 2-aminopurine remains sharp upon solvation in helium droplets. The line(More)
Physical and chemical properties of nanoparticles are known to be subject to the surface factors. For their biological/biomedical applications, typically, surface of the nanoparticles has to be modified which inevitably affects their performance. In this work we have studied the interaction between the surface related organic vibrational modes and the(More)