Szabolcs Osvath

Learn More
One of the most intriguing predictions of energy landscape models is the existence of non-exponential protein folding kinetics caused by hierarchical structures in the landscapes. Here we provide the strongest evidence so far of such hierarchy and determine the time constants and weights of the kinetic components of the suggested hierarchic energy(More)
Electrochromic absorbance change and light gradient photovoltage measurements were carried out in chloroplast thylakoid membranes embedded in different compositions of gels. The goal was to find a system suitable for determining the dependence of the amplitude of the anomalous light gradient photovoltage signal, with opposite sign with respect to the(More)
We recently reported stretched kinetics during the formation of a collapsed, long-lived intermediate state of the large two-domain enzyme phosphoglycerate kinase (PGK). It was postulated that intrinsic roughness of the energy landscape on the way downhill to the intermediate causes the lack of a single time-scale. Here, we investigate several alternative(More)
Hyperfluorescent intensity maxima during protein unfolding titrations are often taken as a sign for a thermodynamic folding intermediate. Here we explore another possibility: that hyperfluorescence could be the signature of a "pretransition" conformationally loosened native state. To model such native states, we study mutants of a fluorescent ubiquitin(More)
Spectral and kinetic characteristics of fluorescence from isolated reaction centers of photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus were measured at room temperature under rectangular shape of excitation at 810 nm. The kinetics of fluorescence at 915 nm reflected redox changes due to light and dark reactions in the donor(More)
The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded(More)
A minimal kinetic model of the photocycle, including both quinone (Q-6) reduction at the secondary quinone-binding site and (mammalian) cytochrome c oxidation at the cytochrome docking site of isolated reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides, was elaborated and tested by cytochrome photooxidation under strong continuous(More)
The human glycine tRNA synthetase gene (GlyRS) has been cloned and sequenced. The 2462 bp cDNA for this gene contains a large open reading frame (ORF) encoding 685 amino acids with predicted M(r) = 77,507 Da. The protein sequence has approximately 60% identity with B. mori GlyRS and 45% identity with S. cerevisiae GlyRS and contains motifs 2 and 3(More)
Proline isomerization is well known to cause additional slow phases during protein refolding. We address a new question: does the presence of prolines significantly affect the very fast kinetics that lead to the formation of folding intermediates? We examined both the very slow (10-100 min) and very fast (4 micro s-2.5 ms) folding kinetics of the two-domain(More)
Amyloid deposits, which accumulate in numerous diseases, are the final stage of multi-step protein conformational-conversion and oligomerization processes. The underlying molecular mechanisms are not fully understood, and particularly little is known about the reverse reaction. Here we show that phosphoglycerate kinase amyloid fibrils can be converted back(More)