Szabolcs Csonka

Learn More
Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such(More)
The break-junction technique is widely used to measure electronic properties of nanoscale junctions including metal point-contacts and single-molecule junctions. In these measurements, conductance is measured as a function of electrode displacement yielding data that is analyzed by constructing conductance histograms to determine the most frequently(More)
The nanoribbons were fabricated by depositing a graphene flake over a bottom gate structure, then etching longitudinal edges and a hole in the center of the flake using re-active ion etching, before suspension. Fig. S1 shows an SEM image of a final double-ribbon structure. Two bottom gates-situated below the suspended branches and contacts are schematically(More)
The formation of quantum Hall channels inside the bulk of graphene is studied using various contact and gate geometries. p-n junctions are created along the longitudinal direction of samples, and enhanced conductance is observed in the case of bipolar doping due to the new conducting channels formed in the bulk, whose position, propagating direction and, in(More)
We study the g-factor of discrete electron states in InAs nanowire based quantum dots. The g values are determined from the magnetic field splitting of the zero bias anomaly due to the spin 1/2 Kondo effect. Unlike to previous studies based on 2DEG quantum dots, the g-factors of neighboring electron states show a surprisingly large fluctuation: g can(More)
  • 1