Sys Hasslund

Learn More
Tendon injury frequently results in the formation of adhesions that reduce joint range of motion. To study the cellular, molecular, and biomechanical events involved in intrasynovial tendon healing and adhesion formation, we developed a murine flexor tendon healing model in which the flexor digitorum longus (FDL) tendon of C57BL/6 mice was transected and(More)
Reconstruction of flexor tendons often results in adhesions that compromise joint flexion. Little is known about the factors involved in the formation of flexor tendon graft adhesions. In this study, we developed and characterized a novel mouse model of flexor digitorum longus (FDL) tendon reconstruction with live autografts or reconstituted freeze-dried(More)
Advances in allograft processing have opened new horizons for clinical adaptation of flexor tendon allografts as delivery scaffolds for antifibrotic therapeutics. Recombinant adeno-associated-virus (rAAV) gene delivery of the growth and differentiation factor 5 (GDF-5) has been previously associated with antifibrotic effects in a mouse model of flexor(More)
Tendon reconstruction using grafts often results in adhesions that limit joint flexion. These adhesions are precipitated by inflammation, fibrosis, and the paucity of tendon differentiation signals during healing. In order to study this problem, we developed a mouse model in which the flexor digitorum longus (FDL) tendon is reconstructed using a live(More)
Mouse models offer invaluable cellular and molecular tools for the study of human pathologies including those associated with fibrotic and musculoskeletal diseases. In this methods manuscript, we describe a mouse model of repair and segmental reconstruction of flexor tendons, which in our laboratory has been an invaluable model to study tendon scarring and(More)
  • 1