Learn More
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small(More)
Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an(More)
BACKGROUND Brown algae are plant multi-cellular organisms occupying most of the world coasts and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus is an emerging model for brown algal research. Its genome has been sequenced, and several tools are being developed to perform analyses at different levels of(More)
Alginate is an industrially important polysaccharide obtained commercially by harvesting brown algae. The final step in alginate biosynthesis, the epimerization of beta-1,4-d-mannuronic acid to alpha-1,4-l-guluronic acid, a structural change that controls the physicochemical properties of the alginate, is catalyzed by the enzyme mannuronan C-5-epimerase.(More)
Chondrus crispus is a common red macroalga living on the rocky shores of the North Atlantic Ocean. It has a long research history, being a major source of carrageenan, a thickener widely used in the food industry, but also for physiological and ecological studies. To establish it as a model for red algae, its genome has been sequenced, allowing the(More)
We describe here the complete sequence (58,507 bp) of the mitochondrial genome of the brown alga Pylaiella littoralis (Ectocarpales). This molecule displays an AT content of 62.0% and contains seventy-nine genes, most of them (73) encoded on one strand. They include the usual mitochondrial set of protist genes and a number of rarer genes. Among these,(More)
The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As(More)
• Knowledge about primary metabolic processes is essential for the understanding of the physiology and ecology of seaweeds. The Ectocarpus siliculosus genome now facilitates integrative studies of the molecular basis of primary metabolism in this brown alga. • Metabolite profiling was performed across two light-dark cycles and under different CO2 and O2(More)
Colonizations of freshwater by marine species are rare events, and little information is known about the underlying mechanisms. Brown algae are an independent lineage of photosynthetic and multicellular organisms from which few species inhabit freshwater. As a marine alga that is also found in freshwater, Ectocarpus is of particular interest for studying(More)
Natural populations of the marine cyanobacterium Prochlorococcus exist as two main ecotypes, inhabiting different layers of the ocean's photic zone. These so-called high light- (HL-) and low light (LL-) adapted ecotypes are both physiologically and genetically distinct. HL strains can be separated into two major clades (HLI and HLII), whereas LL strains are(More)